Robotics at Amazon

Three of Amazon’s leading roboticists — Sidd Srinivasa, Tye Brady, and Philipp Michel — discuss the challenges of building robotic systems that interact with human beings in real-world settings.

The International Conference on Robotics and Automation (ICRA), the major conference in the field of robotics, takes place this week, and Amazon is one of its silver sponsors. To mark the occasion, Amazon Science sat down with three of Amazon’s leading roboticists to discuss the challenges of building robotic systems that interact with human beings in real-world settings.

Roboticists.png
From left to right, Sidd Srinivasa, director of Amazon Robotics AI; Tye Brady, chief technologist for global Amazon Robotics; and Philipp Michel, senior manager of applied science for Amazon Scout.

As the director of Amazon Robotics AI, Siddhartha (Sidd) Srinivasa is responsible for the algorithms that govern the autonomous robots that assist employees in Amazon fulfillment centers, including robots that can pick up and package products and the autonomous carts that carry products from the shelves to the packaging stations.

More about robotics at Amazon

Learn more about robotics at Amazon — including job opportunities — and about Amazon's participation at ICRA.

Tye Brady, the chief technologist for global Amazon Robotics, helps shape Amazon’s robotics strategy and oversees university outreach for robotics.

Philipp Michel is the senior manager of applied science for Amazon Scout, an autonomous delivery robot that moves along public sidewalks at a walking pace and is currently being field-tested in four U.S. states.

Amazon Science: There are a lot of differences between the problems you’re addressing, but I wondered what the commonalities are.

Sidd Srinivasa: The thing that makes our problem incredibly hard is that we live in an open world. We don't even know what the inputs that we might face are. In our fulfillment centers, I need to manipulate over 20 million items, and that increases by several hundreds of thousands every day. Oftentimes, our robots have absolutely no idea what they're picking up, but they need to be able to pick it up carefully without damaging it and package it effortlessly.

Related content
Advanced machine learning systems help autonomous vehicles react to unexpected changes.

Philipp Michel: For Scout, it's the objects we encounter on the sidewalk, as well as the environment. We operate personal delivery devices in four different U.S. states. The weather conditions, lighting conditions — there’s a huge amount of variability that we explicitly wanted to tackle from the get-go to expose ourselves to all of those difficult, difficult problems.

Tye Brady: For the development of our fulfillment robotics, we have a significant advantage in that we operate in a semi-structured environment. We get to set the rules of the road. Knowing the environment really helps our scientists and engineers contextualize and understand the objects we have to move, manipulate, sort, and identify to fulfill any order. This is a significant advantage in that it gives us real-world project context to pursue our plans for technology development

Philipp Michel: Another commonality, if it isn't obvious, is that we rely very heavily on learning from data to solve our problems. For Scout, that is all of the real-world data that the robot receives on its missions, which we continuously try to iterate on to develop machine learning solutions for perception, for localization to a degree, and eventually for navigation as well.

Sidd Srinivasa: Yeah, I completely agree with that. I think that machine learning and adaptive control are critical for superlinear scaling. If we have tens, hundreds, thousands of robots deployed, we can't have tens, hundreds, thousands of scientists and engineers working on them. We need to scale superlinearly with respect to that.

And I think the open world compels us to think about continual learning. Our machine learning models are trained on some input data distribution. But because of an open world, we have what's called covariate shift, which is that the data that you see doesn't match the distribution, and that causes your machine learning model often to be unreasonably overconfident.

Amazon_Prime_Amazon Robotics_3s_600x338.gif
In the six months after the Robin robotic arm was deployed, continual learning halved the number of packages it couldn't pick up (which was low to begin with).

So a lot of work that we do is on creating watchdogs that can identify when the input data distribution has deviated from the distribution that it was trained on. Secondly, we do what we call importance sampling such that we can actually pick out the pieces that have changed and retrain our machine learning models.

Philipp Michel: This is again one of the reasons why we want to have this forcing function of being in a wide variety of different places, so we get exposed to those things as quickly as possible and so that it forces us to develop solutions that handle all of that novel data.

Sidd Srinivasa: That's a great point that I want to continue to highlight. One of the advantages of having multiple robots is the ability for one system to identify that something has changed, to retrain, and then to share that knowledge to the rest of the robots.

We have an anecdote of that in one of our picking robots. There was a robot in one part of the world that noticed a new package type that came by. It struggled mightily at the beginning because it had never seen that and identified that it was struggling. The solution was rectified, and then it was able to transmit the model to all the other robots in the world such that even before this new package type arrived in some of those locations, those robots were prepared to address it. So there was a blip, but that blip occurred only in one location, and all the other locations were prepared to address that because this system was able to retrain itself and share that information.

Related content
An advanced perception system, which detects and learns from its own mistakes, enables Robin robots to select individual objects from jumbled packages — at production scale.

Philipp Michel: Our bots do similar things. If there are new types of obstacles that we haven't encountered before, we try to adjust our models to recognize those and handle those, and then that gets deployed to all of the bots.

One of the things that keeps me up at night is that we encounter things on the sidewalk that we may not see again for three years. Specific kinds of stone gargoyles used as Halloween decorations on people’s lawns. Or somebody deconstructed a picnic table that had an umbrella, so it is not recognizable as a picnic table to any ML [machine learning] algorithm.

One of the advantages of having multiple robots is the ability to identify that something has changed, to retrain, and then to share that knowledge to the rest of the robots.
Sidd Srinivasa, director of Amazon Robotics AI

So some of our scientific work is on how we balance between generic things that detect that there is something you should not be driving over and things that are quite specific. If it's an open manhole cover, we need to get very good at recognizing that. Whereas if it's just some random box, we might not need a specific hierarchy of boxes — just that it is something that we should not be traversing.

Sidd Srinivasa: Another challenge is that when you do change your model, it can have unforeseen consequences. Your model might change in some way that perhaps doesn't affect your perception but maybe changes the way your robot brakes, and that leads to the wearing of your ball bearings two months from now. We work with these end-to-end systems, where a lot of interesting future research is in being able to understand the consequences of changing parts of the system on the entire system performance.

Philipp Michel: We spent a lot of time thinking about to what degree we should compartmentalize the different parts of the robot stack. There are lots of benefits to trying to be more integrative across them. But there's a limit to that. One extreme is the cameras-to-motor-torques kind of learning that is very challenging in any real-world robotics application. And then there is the traditional robotics stack, which is well separated into localization, perception, planning, and controls.

Related content
Amazon Research Award recipient Russ Tedrake is teaching robots to manipulate a wide variety of objects in unfamiliar and constantly changing contexts.

We also spend a lot of time thinking about how the stack should evolve over time. What performance gains can we get when we more tightly couple some of these parts? At the same time, we want to have a system that remains as explainable as possible. A lot of thought goes into how we can leverage more integration of the learned components across the stack while at the same time retaining the amounts of explainability and safety functionality that we need.

Sidd Srinivasa: That's a great point. I completely agree with Philipp that one model to rule them all may not necessarily be the right answer. But oftentimes we end up building machine learning models that share a common backbone but have multiple heads for multiple applications. What an object is, what it means to segment an object, might be similar for picking or stowing or for packaging, but then each of those might require specialized heads that sit on top of a backbone for those specialized tasks.

Philipp Michel: Some factors we consider are battery, range, temperature, space, and compute limitations. So we need to be very efficient in the models that we use and how we optimize them and how we try to leverage as much shared backbone across them as possible with, as Sidd mentioned, different heads for different tasks.

Amazon_Prime_Amazon Scouts_3s_600x338.gif
Amazon Scout is an autonomous delivery robot that moves along public sidewalks at a walking pace and is currently being field-tested in four U.S. states.

Tye Brady: The nice thing about what Sidd and Philipp describe is that there is always a person to help. The robot can ask another robot through AWS for a different sample or perspective, but the true power comes from asking one of our employees for help in how to perceive or problem-solve. This is super important because the robot can learn from this interaction, allowing our employees to focus on higher-level tasks, things you and I would call common sense. That is not so easy in the robotics world, but we are working to design our machines to understand intent and redirection to reinforce systemic models our robots have of the world. All three of us have that in common.

Related content
When it comes to search-and-rescue missions, dogs are second to none, but an Amazon Research Award recipient says they might have competition from drones.

Amazon Science: When I asked about the commonalities between your projects, one of the things I was thinking about is that you all have robots that are operating in the same environments as humans. How does that complicate the problem?

Tye Brady: When we design our machines right, humans never complicate the problem; they only make it easier. It is up to us to make machines that enhance our human environment by providing a safety benefit and a convenience to our employees. A well-designed machine may fill a deficit for employees that’s not possible without a machine. Either way, our robotics should make us more intelligent, more capable, and freer to do the things that matter most to us.

Philipp Michel: Our direct interactions with our customers and the community are of utmost importance for us. So there's a lot of work that we do on the CX [customer experience] side in trying to make that as delightful as possible.

Another thing that's important for us is that the robot has delightful and safe and understandable interactions with people who might not be customers but whom the robot encounters on its way. People haven't really been exposed to autonomous delivery devices before. So we think a lot about what those interactions should look like on the sidewalk.

A big part of our identity is not just the appearance but how it manifests it through its motion and its yielding behaviors
Philipp Michel, senior manager of applied science for Amazon Scout

On the one hand, you should try to act as much as a normal traffic participant would as possible, because that's what people are used to. But on the other hand, people are not used to this new device, so they don't necessarily assume it's going to act like a pedestrian. It's something that we constantly think about. And that's not just at the product level; it really flows down to the bot behavior, which ultimately is controlled by the entire stack. A big part of our identity is not just the appearance but how it manifests it through its motion and its yielding behaviors and all of those kinds of things.

Sidd Srinivasa: Our robots are entering people's worlds. And so we have to be respectful of all the complicated interactions that happen inside our human worlds. When we walk, when we drive, there is this complex social dance that we do in addition to the tasks that we are performing. And it's important for our robots, first of all, to have awareness of it and, secondly, to participate in it.

And it's really hard, I must say. When you're driving, it's sometimes hard to tell what other people are thinking about. And then it's hard to decide how you want to act based on what they're thinking about. So just the inference problem is hard, and then closing the loop is even harder.

Related content
Publicly released TEACh dataset contains more than 3,000 dialogues and associated visual data from a simulated environment.

If you're playing chess or go against a human, then it's easier to predict what they're going to do, because the rules are well laid out. If you play assuming that your opponent is optimal, then you're going to do well, even if they are suboptimal. That's a guarantee in certain two-player games.

But that's not the case here. We're playing this sort of cooperative game of making sure everybody wins. And when you're playing these sorts of cooperative games, then it's actually very, very hard to predict even the good intentions of the other agents that you're working with.

Philipp Michel: And behavior varies widely. We have times when pets completely ignore the robot, could not care at all, and we have times when the dog goes straight towards the bot. And it's similar with pedestrians. Some just ignore the bot, while others come right up to it. Particularly kids: they’re super curious and interact very closely. We need to be able to handle all of those types of scenarios safely. All of that variability makes the problem super exciting.

Tye Brady: It is an exciting time to be in robotics at Amazon! If any roboticists are out there listening, come join us. It's wicked awesome.

robin arm with gripper.jpg
Credit: F4D Studio
Amazon Robotics is hiring! Advancements are underway in autonomous movement and mobility, artificial intelligence and machine learning, manipulation, simulation, robotic-management software, predictive analytics, and much more.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
CA, ON, Toronto
We are a part of Amazon Alexa Devices organization with the mission “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing an advanced system using Large Language Model (LLM) technologies to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware speech assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist on the team, you will collaborate with other applied scientists and engineers to develop novel algorithms to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learning, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
US, WA, Bellevue
Amazon is committed to exceeding customer expectations. In the Returns and Recommerce organization, we seek to improve customer satisfaction with the items they buy on Amazon, provide new value for our customers, and reduce costs to drive the holistic business flywheel. The Return and Recommerce team is looking for an Economist intern with time series forecasting skills to join our cross-domain group of economists, applied scientists, and business intelligence engineers. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets, and train and deploy time series forecasting solutions at scale. Knowledge of time-series forecasting as well as basic familiarity with either Python or R is necessary. Experience in Bayesian modelling or geospatial forecasting would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, CA, Santa Clara
The Automated Reasoning Group is looking for an Applied Scientist with experience in building scalable formal reasoning solutions that delight customers. You will be part of a world-class team building the next generation of tools and services by combining Automated Reasoning and Generative AI. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. You will apply your knowledge to propose solutions, create software prototypes, and move prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever-growing demand of customer use. You will use your strong verbal and written communication skills, are self-driven and own the delivery of high quality results in a fast-paced environment. Each day, hundreds of thousands of developers make billions of transactions worldwide on AWS. They harness the power of the cloud to enable innovative applications, websites, and businesses. Using automated reasoning technology and mathematical proofs, AWS allows customers to answer questions about security, availability, durability, and functional correctness. We call this provable security, absolute assurance in security of the cloud and in the cloud. See https://aws.amazon.com/security/provable-security/ As an Applied Scientist in AWS AI, you will play a pivotal role in shaping the definition, vision, design, roadmap and development of product features from beginning to end. You will: * Define and implement new formal reasoning applications that employ scalable and efficient approaches to solve complex problems using Automated Reasoning and Generative AI technologies. * Apply software engineering best practices to ensure a high standard of quality for all team deliverables * Work in an agile, startup-like development environment, where you are always working on the most important stuff * Deliver high-quality scientific artifacts * Work with the team to lower the barrier of adoption for interactive theorem provers * Work with the team to help drive business decisions Learn and Be Curious. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Key job responsibilities * Design and implement scalable systems for formal reasoning and automated theorem proving. * Collaborate closely with internal and external users to understand their requirements for formal verification and automated reasoning. * Enhance and extend the capabilities of formal reasoning systems to meet application-specific demands. * Proactively identify and explore new opportunities for deploying and leveraging formal reasoning solutions across various domains. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. EEO/Accommodations AWS is committed to a diverse and inclusive workplace to deliver the best results for our customers. Amazon is an equal opportunity employer and does not discriminate on the basis of race, national origin, gender, gender identity, sexual orientation, protected veteran status, disability, age, or other legally protected status; we celebrate the diverse ways we work. For individuals with disabilities who would like to request an accommodation, please let us know and we will connect you to our accommodation team. You may also reach them directly by visiting https://www.amazon.jobs/en/disability/us. About the team The AWS Automated Reasoning Group is a talented group of scientists from around the world. Their areas of expertise include interactive theorem proving, generative AI, SAT/SMT solvers, and programming language theory.
US, NY, New York
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences