Improving forecasting by learning quantile functions

Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

The quantile function is a mathematical function that takes a quantile (a percentage of a distribution, from 0 to 1) as input and outputs the value of a variable. It can answer questions like, “If I want to guarantee that 95% of my customers receive their orders within 24 hours, how much inventory do I need to keep on hand?” As such, the quantile function is commonly used in the context of forecasting questions.

In practical cases, however, we rarely have a tidy formula for computing the quantile function. Instead, statisticians usually use regression analysis to approximate it for a single quantile level at a time. That means that if you decide you want to compute it for a different quantile, you have to build a new regression model — which, today, often means retraining a neural network.

In a pair of papers we’re presenting at this year’s International Conference on Artificial Intelligence and Statistics (AISTATS), we describe an approach to learning an approximation of the entire quantile function at once, rather than simply approximating it for each quantile level.

Related content
Konstantinos Benidis talks about his experience as an intern at Amazon, and why he decided to pursue a full-time role at the company.

This means that users can query the function at different points, to optimize the trade-offs between performance criteria. For instance, it could be that lowering the guarantee of 24-hour delivery from 95% to 94% enables a much larger reduction in inventory, which might be a trade-off worth making. Or, conversely, it could be that raising the guarantee threshold — and thus increasing customer satisfaction — requires very little additional inventory.

Our approach is agnostic as to the shape of the distribution underlying the quantile function. The distribution could be Gaussian (the bell curve, or normal distribution); it could be uniform; or it could be anything else. Not locking ourselves into any assumptions about distribution shape allows our approach to follow the data wherever it leads, which increases the accuracy of our approximations.

In the first of our AISTATS papers, we present an approach to learning the quantile function in the univariate case, where there’s a one-to-one correspondence between probabilities and variable values. In the second paper, we consider the multivariate case.

The quantile function

Any probability distribution — say, the distribution of heights in a population — can be represented as a function, called the probability density function (PDF). The input to the function is a variable (a particular height), and the output is a positive number representing the probability of the input (the fraction of people in that population who have that height).

Cumulative distribution function.png
The graph of a probability density function (blue line) and its associated cumulative distribution function (orange line).

A useful related function is the cumulative distribution function (CDF), which is the probability that the variable will take a value at or below a particular value — for instance, the fraction of the population that is 5’6” or shorter. The CDF’s values are between 0 (no one is shorter than 0’0”) and 1 (100% of the population is shorter than 500’0”).

Technically, the CDF is the integral of the PDF, so it computes the area under the probability curve up to the target point. At low input values, the probability output by the CDF can be lower than that output by the PDF. But because the CDF is cumulative, it is monotonically non-decreasing: the higher the input value, the higher the output value.

If the CDF exists, the quantile function is simply its inverse. The quantile function’s graph can be produced by flipping the CDF graph over — that is, rotating it 180 degrees around a diagonal axis that extends for the lower left to the upper right of the graph.

Quantile function animation.gif
The quantile function is simply the inverse of the cumulative distribution function (if it exists). Its graph can be produced by flipping the cumulative distribution function's graph over.

Like the CDF, the quantile function is monotonically non-decreasing. That’s the fundamental observation on which our method rests.

The univariate case

Quantile estimator architecture.png
The architecture of our quantile function estimator (the incremental quantile function, or IQF), which enforces the monotonicity of the quantile function by representing the value of each quantile as an incremental increase in the value of the previous quantile.

One of the drawbacks of the conventional approach to approximating the quantile function — estimating it only at specific points — is that it can lead to quantile crossing. That is, because each prediction is based on a different model, trained on different local data, the predicted variable value for a given probability could be lower than the value predicted for a lower probability. This violates the requirement that the quantile function be monotonically non-decreasing.

Quantile function, five knots.png
An approximation of the quantile function that (mostly) uses linear extrapolation.
Quantile function, 20 knots.png
An approximation of the quantile function with 20 knots (anchor points).

To avoid quantile crossing, our method learns a predictive model for several different input values — quantiles — at once, spaced at regular intervals between 0 and 1. The model is a neural network designed so that the prediction for each successive quantile is an incremental increase of the prediction for the preceding quantile.

Once our model has learned estimates for several anchor points that enforce the monotonicity of the quantile function, we can estimate the function through simple linear extrapolation between the anchor points (called “knots” in the literature), with nonlinear extrapolation to handle the tails of the function.

Where training data is plentiful enough to enable a denser concentration of anchor points (knots), linear extrapolation provides a more accurate approximation.

To test our method, we applied it to a toy distribution with three arbitrary peaks, to demonstrate that we don’t need to make any assumptions about distribution shape.

Distribution and approximations.png
The true distribution (red, right), with three arbitrary peaks; our method's approximation, using five knots (center); and our method's approximation, using 20 knots (right).

The multivariate case

So far, we’ve been considering the case in which our distribution applies to a single variable. But in many practical forecasting use cases, we want to consider multivariate distributions.

For instance, if a particular product uses a rare battery that doesn’t come included, a forecast of the demand for that battery will probably be correlated with the forecast of the demand for that product.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

Similarly, if we want to predict demand over several different time horizons, we would expect there to be some correlation between consecutive predictions: demand shouldn’t undulate too wildly. A multivariate probability distribution over time horizons should capture that correlation better than a separate univariate prediction for each horizon.

The problem is that the notion of a multivariate quantile function is not well defined. If the CDF maps multiple variables to a single probability, when you perform that mapping in reverse, which value do you map to?

This is the problem we address in our second AISTATS paper. Again, the core observation is that the quantile function must be monotonically non-decreasing. So we define the multivariate quantile function as the derivative of a convex function.

A convex function is one that tends everywhere toward a single global minimum: in two dimensions, it looks like a U-shaped curve. The derivative of a function computes the slope of its graph: again in the two-dimensional case, the slope of a convex function is negative but flattening as it approaches the global minimum, zero at the minimum, and increasingly positive on the other side. Hence, the derivative is monotonically increasing.

Multivariate quantile function.png
A convex function (blue) and its monotonically increasing derivative (green).

This two-dimensional picture generalizes readily to higher dimensions. In our paper, we describe a method for training a neural network to learn a quantile function that is the derivative of a convex function. The architecture of the network enforces convexity, and, essentially, the model learns the convex function using its derivative as a training signal.

In addition to real-world datasets, we test our approach on the problem of simultaneous prediction across multiple time horizons, using a dataset that follows a multivariate Gaussian distribution. Our experiments showed that, indeed, our approach better captures the correlations between successive time horizons than a univariate approach.

Quantile correlation.png
Three self-correlation graphs that maps a time series against itself. At left is the ground truth. In the center is the forecast produced by a standard univariate quantile function, in which each time step correlates only with itself. At right is the forecast produced using our method, which better captures correlations between successive time steps.

This work continues a line of research at Amazon combining quantile regression and deep learning to solve forecasting problems at a massive scale. In particular, it builds upon work on the MQ-CNN model proposed by a group of Amazon scientists in 2017, extensions of which are currently powering Amazon’s demand forecasting system. The current work is also closely related to spline quantile function RNNs, which — like the multivariate quantile forecaster — started as an internship project.

Code for all these methods is available in the open source GluonTS probabilistic time series modeling library.

Acknowledgements

This work would have not been possible without the help of our awesome co-authors, whom we would like to thank for their contributions to these two papers: Kelvin Kan, Danielle Maddix, Tim Januschowski, Konstantinos Benidis, Lars Ruthotto, and Yuyang Wang, Jan Gasthaus.

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.