Improving LLM pretraining with better data organization

“Best-fit packing” adapts bin-packing to avoid unnecessary truncation of training documents, improving LLM performance across a wide range of tasks and reducing hallucination.

The documents used to train a large language model (LLM) are typically concatenated to form a single “superdocument”, which is then divided into sequences that match the model's context length. This improves training efficiency but often results in unnecessary truncations, where individual documents are broken up across successive sequences.

Related content
Contiguous parameter management and prefetched activation offloading expand the MiCS tool kit.

In paper we’re presenting at this year’s International Conference on Machine Learning (ICML 2024), titled “Fewer truncations improve language modeling”, we report an in-depth study of this common concatenation-chunking document-processing method. We found that it severely impairs the model's ability to understand contextual coherence and factual consistency. This not only affects the model's performance on downstream tasks but also increases the risk of hallucinations.

To address this issue, we propose best-fit packing, an innovative document-processing strategy that optimizes document combinations to eliminate unnecessary text truncations. In experiments, we compared a model trained using best-fit packing to one trained in the ordinary way on six downstream tasks: reading comprehension, natural-language inference, context following, summarization, commonsense and closed-book question answering, and program synthesis. We found that best-fit packing monotonically improves performance on an array of 22 sub-tasks, by as much as 15% (program synthesis) to 17% (context following). Importantly, best-fit packing also reduces closed-domain hallucination effectively by up to 58.3%.

Best-fit packing.png
A comparison of best-fit packing (left), which seeks to minimize document truncation, with the standard approach to large-language-model training, which concatenates training documents and then divides them into fixed-length sequences.

Consequences of truncation

In the analysis reported in our paper, we identified several problems caused by document truncation, including undefined names, ungrounded content, and missing knowledge.

Related content
Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

Undefined names: In programming languages like Python, truncation may separate definitions of variables from their invocations, introducing syntax errors and causing some variables to be undefined. As a consequence, the model may learn misleading patterns and possibly hallucinate on downstream tasks.

Ungrounded content: Truncation damages data integrity. In the example below, for instance, a reference (“the earthquake on Monday morning”) is separated from its antecedent, resulting in unfaithful generation.

Missing knowledge: Truncation hinders knowledge acquisition. In the example below, the model cannot learn the location of the ICML conference because the conference name and location occur in different training sequences.

Truncation errors.png
Examples of three common truncation errors: (a) undefined names, (b) ungrounded content, and (c) missing knowledge.

Best-fit packing

To address this issue, we propose optimizing the assignment of documents to training sequences so as to eliminate unnecessary truncations, while minimally increasing the number of sequences relative to concatenation. This is a variation of the well-known bin-packing problem, which is NP-hard in general, but we use a heuristic called the best-fit-decreasing (BFD) algorithm that tends to work well in practice. We thus call our method best-fit packing.

The normal implementation of BFD has quasi-linear time complexity, which is not efficient enough for LLM pretraining, which typically involves millions of documents. By taking advantage of the unique nature of pretraining data, however, we were able to optimize BFD so that it scales linearly with data size, ensuring its applicability to large-scale pretraining datasets. Further, we show that in practical applications, best-fit packing generates approximately the same number of training sequences as the traditional method, while significantly reducing data loss caused by truncation.

Truncations per document.png
Truncations per document as a function of document length, for both best-fit packing (pack) and concatenation (concat), for natural-language data (top) and programming-language data (bottom). The natural-language data is evaluated with context lengths of both 2,000 and 8,000.

Curious to know how we achieve it? Let’s dive deep!

Best-fit packing — an example

Following the standard bin-packing nomenclature, we call each training sequence a “bin”, and each bin has a capacity equal to the LLM’s context size. The goal is to assign a combination of whole documents to each bin so as to minimize the wasted bin capacity.

First, we divide any document that’s larger than the LLM context into context-length chunks, plus a remainder. Then we sort the documents (and document fragments) from largest to smallest. Finally, we work our way down the sorted list, assigning each document to the bin whose available space is as close to the document size as possible.

Related content
Novel “checkpointing” scheme that uses CPU memory reduces the time wasted on failure recovery by more than 92%.

To maximize efficiency, we use three data structures to manage the assignment of documents to bins: a binary tree and two tables. We can use this design because (1) the maximum bin size is the model’s context size, so the tree won’t be too deep, and (2) we do not need to distinguish bins with the same remaining capacity, which simplifies the the tree. Instead, we use the tables to map bin capacities to bins.

Consider a simple example, in which the context size (the bin size) is eight. The binary tree has eight leaves, corresponding to the eight possibilities for available space in any given bin. (In a real LLM, the context size is on the order of thousands of tokens, so the tree would have thousands of leaves.)

Each parent node of the tree has an associated number, indicating the size of the largest available bin slot among its descendants. The number associated with the parent’s right child is always greater than or equal to the number associated with the left child.

Initially, the value of the rightmost node in each layer of the tree is eight, and all the other nodes have values of zero. This means that all the available bin slots have a capacity of eight.

Best-fit initialization.png
The initial states of the three data structures we use to implement best-fit packing. The rightmost node of each layer of the tree has a value of eight, and all other nodes have values of zero, indicating that all the bins are empty (i.e., are at maximum capacity).

Now consider a later state, when four documents of size eight, six, six, and four have been packed. The two bins containing documents of size six have available slots of size two (8 – 6), and the bin containing a document of size four has an available slot of size four (8 – 4). These sizes are represented by the numbers two and four at leaves two and four of the tree. Multiple bins remain empty, so leaf eight has a value of eight, too.

Note that the value two at leaf two indicates only that at least one bin slot of size two is available; it doesn’t indicate how many such slots there are or where they can be found. That information is contained in the tables.

Tree after packing.png
The state of the data structures after four documents of sizes six, six, four, and eight have been packed.

Now consider a document of size three, which we wish to assign to a bin. To find the best available bin slot, simply go left at each node of the tree, unless going left leads to a node whose value is less than the document size, in which case, go right.

Document packing.png
Tree traversal identifies the available bin slot that best fits the new document.

The best fit for a document of size three is a slot of size four, and in the “space-to-bins” table, we see that there is one bin — bin three — with a slot of that size. So there we place the document.

Finally, we update all three data structures to reflect the new placement:

Data structure update.png
Data structure updates after the document (item four) of size three has been packed. The tree leaf corresponding to slot sizes of four is reset to zero, and the tree leaf corresponding to slot sizes of one is set to one. The tables are updated accordingly.

Results

To evaluate the effect of bin-packing on downstream tasks, we pretrained models of 7 billion and 13 billion parameters with context lengths of 2,000 and 8,000 on text and code using both best-fit packing and concatenation. We then tested both sets of models on our six downstream tasks. On average, across multiple datasets, context lengths, and metrics, best-fit packing offered better performance on all six tasks. The biggest gains came in reading comprehension (+4.7%), natural-language inference (+9.3%), context following (+16.8%), and program synthesis (+15.0%).

Related content
In a series of papers, Amazon researchers performed a theoretical analysis of a simplified problem that led to a learnable learning-rate scheduler, applied that scheduler to a more complex neural model, and distilled the results into a practical algorithm.

We also found that best-fit packing helped prevent closed-domain hallucination, particularly in program synthesis tasks, where it reduced "undefined name" errors by up to 58.3%, indicating a more complete understanding of program structure and logic.

Additionally, models trained with best-fit packing were better at following instructions, such as adhering to length constraints. And best-fit packing helped the model acquire “tail knowledge” that is truncation sensitive due to scarcity in training data. Indeed, this result suggests a possible reason for why LLMs struggle to learn long-tail knowledge.

While the experiments conducted in our paper primarily focused on LLM pretraining, best-fit packing is broadly applicable to fine tuning as well. Determining the benefits it can offer during fine tuning is an intriguing topic for future study.

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
JP, 13, Tokyo
The JP Books - Manga team is looking for an Applied Scientist to participate in our AI related efforts to develop new prototypes and concepts that can then be translated into meaningful technologies impacting millions of customers. In this position, you will be expected to research, design and build/train/tune models and provide recommendations in areas including but not limited to natural language processing (automatic translation, summarization, extraction) and image processing (boundary detection, image understanding, image generation). The ideal candidate will have strong knowledge in the areas of Computer Vision, Translations and or Image understanding/generation. This is the ideal role if you are excited about leveraging science for tangible business impact to the Manga books business. Amazon encourages publications, and you will work within an international team of engineers, all based in Tokyo, Japan while collaborating with partner scientists in Tokyo and Seattle. Key job responsibilities As an Applied Scientist, your responsibilities will be: - Spot opportunities for innovation using AI for the JP Manga business, and publish to internal or external conferences. - Work closely with other Books scientists and engineers to build, review and improve your model design proposals. - Partner with product managers and other business stakeholders, documenting and explaining your progress in business reviews, and being the technical voice in charge of your product. - Be active in the community, participating in science education/growth activities for Books and Amazon JP - Keep up to date with scientific development in related field About the team Our team develops and owns the experience for Manga books on Amazon in Japan. We build products powering the solutions offered to publishers, authors and customers in Japan and worldwide. We interact with Product Managers and business stakeholders to develop features that allow us to better serve our customers. We place strong emphasis on continuous learning through internal mechanisms for our team to keep on growing their expertise and keep up with the state of the art. Our mission is to establish Amazon Manga as the go-to destination for digital and print Manga.