Improving LLM pretraining with better data organization

“Best-fit packing” adapts bin-packing to avoid unnecessary truncation of training documents, improving LLM performance across a wide range of tasks and reducing hallucination.

The documents used to train a large language model (LLM) are typically concatenated to form a single “superdocument”, which is then divided into sequences that match the model's context length. This improves training efficiency but often results in unnecessary truncations, where individual documents are broken up across successive sequences.

Related content
Contiguous parameter management and prefetched activation offloading expand the MiCS tool kit.

In paper we’re presenting at this year’s International Conference on Machine Learning (ICML 2024), titled “Fewer truncations improve language modeling”, we report an in-depth study of this common concatenation-chunking document-processing method. We found that it severely impairs the model's ability to understand contextual coherence and factual consistency. This not only affects the model's performance on downstream tasks but also increases the risk of hallucinations.

To address this issue, we propose best-fit packing, an innovative document-processing strategy that optimizes document combinations to eliminate unnecessary text truncations. In experiments, we compared a model trained using best-fit packing to one trained in the ordinary way on six downstream tasks: reading comprehension, natural-language inference, context following, summarization, commonsense and closed-book question answering, and program synthesis. We found that best-fit packing monotonically improves performance on an array of 22 sub-tasks, by as much as 15% (program synthesis) to 17% (context following). Importantly, best-fit packing also reduces closed-domain hallucination effectively by up to 58.3%.

Best-fit packing.png
A comparison of best-fit packing (left), which seeks to minimize document truncation, with the standard approach to large-language-model training, which concatenates training documents and then divides them into fixed-length sequences.

Consequences of truncation

In the analysis reported in our paper, we identified several problems caused by document truncation, including undefined names, ungrounded content, and missing knowledge.

Related content
Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

Undefined names: In programming languages like Python, truncation may separate definitions of variables from their invocations, introducing syntax errors and causing some variables to be undefined. As a consequence, the model may learn misleading patterns and possibly hallucinate on downstream tasks.

Ungrounded content: Truncation damages data integrity. In the example below, for instance, a reference (“the earthquake on Monday morning”) is separated from its antecedent, resulting in unfaithful generation.

Missing knowledge: Truncation hinders knowledge acquisition. In the example below, the model cannot learn the location of the ICML conference because the conference name and location occur in different training sequences.

Truncation errors.png
Examples of three common truncation errors: (a) undefined names, (b) ungrounded content, and (c) missing knowledge.

Best-fit packing

To address this issue, we propose optimizing the assignment of documents to training sequences so as to eliminate unnecessary truncations, while minimally increasing the number of sequences relative to concatenation. This is a variation of the well-known bin-packing problem, which is NP-hard in general, but we use a heuristic called the best-fit-decreasing (BFD) algorithm that tends to work well in practice. We thus call our method best-fit packing.

The normal implementation of BFD has quasi-linear time complexity, which is not efficient enough for LLM pretraining, which typically involves millions of documents. By taking advantage of the unique nature of pretraining data, however, we were able to optimize BFD so that it scales linearly with data size, ensuring its applicability to large-scale pretraining datasets. Further, we show that in practical applications, best-fit packing generates approximately the same number of training sequences as the traditional method, while significantly reducing data loss caused by truncation.

Truncations per document.png
Truncations per document as a function of document length, for both best-fit packing (pack) and concatenation (concat), for natural-language data (top) and programming-language data (bottom). The natural-language data is evaluated with context lengths of both 2,000 and 8,000.

Curious to know how we achieve it? Let’s dive deep!

Best-fit packing — an example

Following the standard bin-packing nomenclature, we call each training sequence a “bin”, and each bin has a capacity equal to the LLM’s context size. The goal is to assign a combination of whole documents to each bin so as to minimize the wasted bin capacity.

First, we divide any document that’s larger than the LLM context into context-length chunks, plus a remainder. Then we sort the documents (and document fragments) from largest to smallest. Finally, we work our way down the sorted list, assigning each document to the bin whose available space is as close to the document size as possible.

Related content
Novel “checkpointing” scheme that uses CPU memory reduces the time wasted on failure recovery by more than 92%.

To maximize efficiency, we use three data structures to manage the assignment of documents to bins: a binary tree and two tables. We can use this design because (1) the maximum bin size is the model’s context size, so the tree won’t be too deep, and (2) we do not need to distinguish bins with the same remaining capacity, which simplifies the the tree. Instead, we use the tables to map bin capacities to bins.

Consider a simple example, in which the context size (the bin size) is eight. The binary tree has eight leaves, corresponding to the eight possibilities for available space in any given bin. (In a real LLM, the context size is on the order of thousands of tokens, so the tree would have thousands of leaves.)

Each parent node of the tree has an associated number, indicating the size of the largest available bin slot among its descendants. The number associated with the parent’s right child is always greater than or equal to the number associated with the left child.

Initially, the value of the rightmost node in each layer of the tree is eight, and all the other nodes have values of zero. This means that all the available bin slots have a capacity of eight.

Best-fit initialization.png
The initial states of the three data structures we use to implement best-fit packing. The rightmost node of each layer of the tree has a value of eight, and all other nodes have values of zero, indicating that all the bins are empty (i.e., are at maximum capacity).

Now consider a later state, when four documents of size eight, six, six, and four have been packed. The two bins containing documents of size six have available slots of size two (8 – 6), and the bin containing a document of size four has an available slot of size four (8 – 4). These sizes are represented by the numbers two and four at leaves two and four of the tree. Multiple bins remain empty, so leaf eight has a value of eight, too.

Note that the value two at leaf two indicates only that at least one bin slot of size two is available; it doesn’t indicate how many such slots there are or where they can be found. That information is contained in the tables.

Tree after packing.png
The state of the data structures after four documents of sizes six, six, four, and eight have been packed.

Now consider a document of size three, which we wish to assign to a bin. To find the best available bin slot, simply go left at each node of the tree, unless going left leads to a node whose value is less than the document size, in which case, go right.

Document packing.png
Tree traversal identifies the available bin slot that best fits the new document.

The best fit for a document of size three is a slot of size four, and in the “space-to-bins” table, we see that there is one bin — bin three — with a slot of that size. So there we place the document.

Finally, we update all three data structures to reflect the new placement:

Data structure update.png
Data structure updates after the document (item four) of size three has been packed. The tree leaf corresponding to slot sizes of four is reset to zero, and the tree leaf corresponding to slot sizes of one is set to one. The tables are updated accordingly.

Results

To evaluate the effect of bin-packing on downstream tasks, we pretrained models of 7 billion and 13 billion parameters with context lengths of 2,000 and 8,000 on text and code using both best-fit packing and concatenation. We then tested both sets of models on our six downstream tasks. On average, across multiple datasets, context lengths, and metrics, best-fit packing offered better performance on all six tasks. The biggest gains came in reading comprehension (+4.7%), natural-language inference (+9.3%), context following (+16.8%), and program synthesis (+15.0%).

Related content
In a series of papers, Amazon researchers performed a theoretical analysis of a simplified problem that led to a learnable learning-rate scheduler, applied that scheduler to a more complex neural model, and distilled the results into a practical algorithm.

We also found that best-fit packing helped prevent closed-domain hallucination, particularly in program synthesis tasks, where it reduced "undefined name" errors by up to 58.3%, indicating a more complete understanding of program structure and logic.

Additionally, models trained with best-fit packing were better at following instructions, such as adhering to length constraints. And best-fit packing helped the model acquire “tail knowledge” that is truncation sensitive due to scarcity in training data. Indeed, this result suggests a possible reason for why LLMs struggle to learn long-tail knowledge.

While the experiments conducted in our paper primarily focused on LLM pretraining, best-fit packing is broadly applicable to fine tuning as well. Determining the benefits it can offer during fine tuning is an intriguing topic for future study.

Research areas

Related content

US, CA, Sunnyvale
As a Reinforcement Learning Controls Scientist, you will be responsible for developing Reinforcement Learning models to control complex electromechanical systems. You will take responsibility for defining frameworks, performing analysis, and training models that guide and inform mechanical and electrical designs, software implementation, and other software modules that affect overall device safety and performance. You understand trade-offs between model-based and model-free approaches. You will demonstrate cross-functional collaboration and influence to accomplish your goals. You will play a role in defining processes and methods to improve the productivity of the entire team. You will interface with Amazon teams outside your immediate organization to collaborate and share knowledge. You will investigate applicable academic and industry research, prototype and test solutions to support product features, and design and validate production designs that deliver an exceptional user experience. Key job responsibilities - Produce models and simulations of complex, high degree-of-freedom dynamic electromechanical systems - Train Reinforcement Learning control policies that achieve performance targets within hardware and software constraints - Hands-on prototyping and testing of physical systems in the lab - Influence hardware and software design decisions owned by other teams to optimize system-level performance - Work with cross-functional teams (controls, firmware, perception, planning, sensors, mechanical, electrical, etc.) to solve complex system integration issues - Define key performance indicators and allocate error budgets across hardware and software modules - Perform root cause analysis of system-level failures and distinguish between hardware/software failures and hardware/software mitigations - Translate business requirements to engineering requirements and identify trade-offs and sensitivities - Mentor junior engineers in good design practice; actively participate in hiring of new team members About the team The Dynamic Systems and Control team develops models, algorithms, and code to bridge hardware and software development teams and bring robotic products to life. We contributed to Amazon Astro (https://www.amazon.com/Introducing-Amazon-Astro/dp/B078NSDFSB) and Echo Show 10 (https://www.amazon.com/echo-show-10/dp/B07VHZ41L8/), along with several new technology introductions and unannounced products currently in development.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As a Principal Scientist for the team, you will have the opportunity to apply your deep subject matter expertise in the area of ML, LLM and GenAI models. You will invent new product experiences that enable novel advertiser and shopper experiences. This role will liaise with internal Amazon partners and work on bringing state-of-the-art GenAI models to production, and stay abreast of the latest developments in the space of GenAI and identify opportunities to improve the efficiency and productivity of the team. Additionally, you will define a long-term science vision for our advertising business, driven by our customer’s needs, and translate it into actionable plans for our team of applied scientists and engineers. This role will play a critical role in elevating the team’s scientific and technical rigor, identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. You will communicate learnings to leadership and mentor and grow Applied AI talent across org. * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders. * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Data Scientist on our team, you'll analyze complex data, develop statistical methodologies, and provide critical insights that shape how we optimize our solutions. Working closely with our Applied Science team, you'll help build robust analytical frameworks to improve healthcare outcomes. This role offers a unique opportunity to impact healthcare through data-driven innovation. Key job responsibilities In this role, you will: - Analyze complex healthcare data to identify patterns, trends, and insights - Develop and validate statistical methodologies - Create and maintain analytical frameworks - Provide recommendations on data collection strategies - Collaborate with Applied Scientists to support model development efforts - Design and implement statistical analyses to validate analytical approaches - Present findings to stakeholders and contribute to scientific publications - Work with cross-functional teams to ensure solutions are built on sound statistical foundations - Design and implement causal inference analyses to understand underlying mechanisms - Develop frameworks for identifying and validating causal relationships in complex systems - Work with stakeholders to translate causal insights into actionable recommendations A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to validate model predictions and ensure statistical rigor in our approach. Regular interaction with product teams will help translate analytical findings into practical improvements for our services. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
CA, ON, Toronto
The RBKS AI team is responsible for innovating AI features for Ring and Blink cameras, with a mission to make our neighborhoods safer. We are working at the intersection of computer vision, generative AI (GenAI), and ambient intelligence. The team is seeking Applied Science Manager to lead initiatives that combine advanced computer vision and multimodal GenAI capabilities. This role offers a unique opportunity to lead a world-class team while shaping next-generation home security technology and advancing the field of AI algorithms and systems. The team is focused on productizing research in computer vision and GenAI into products that benefit millions of customers worldwide, such as real-time object detection, video understanding, and multimodal LLMs. We are at the forefront of developing AI solutions that seamlessly blend into our products while respecting privacy, delivering unprecedented levels of intelligent security experience. Key job responsibilities - Lead and guide a team of applied scientists in designing and developing advanced computer vision and GenAI models and algorithms for comprehensive video understanding, including but not limited to object detection, recognition and spatial understanding - Drive technical strategy and roadmap for privacy-preserving CV and GenAI models and systems, ensuring the team delivers efficient fine-tuning and on-device and in-cloud inference solutions - Partner with product and engineering leadership to translate business objectives into technical roadmaps, and ensure delivery of high-quality science artifacts that ship to products - Build and maintain strategic partnerships with science, engineering, product, and program management teams across the organization - Recruit, mentor, and develop top-tier applied science talent; provide technical and career guidance to team members while fostering a culture of innovation and excellence - Set technical direction and establish best practices for AI products/features across multiple projects and initiatives