KDD 2023: Graph neural networks’ new frontiers

Conference general chair and Amazon Scholar Yizhou Sun on modeling long-range dependencies, improving efficiency, and new causal models.

In 2021 and 2022, when Amazon Science asked members of the program committees of the Knowledge Discovery and Data Mining Conference (KDD) to discuss the state of their field, the conversations revolved around graph neural networks.

Yizhou Sun.jpeg
Yizhou Sun, an associate professor of computer science at the University of California, Los Angeles; an Amazon Scholar; and general chair of the 2023 Knowledge Discovery and Data Mining Conference.

Graph learning remains the most popular topic at KDD 2023, but as Yizhou Sun, an associate professor of computer science at the University of California, Los Angeles; an Amazon Scholar; and the conference’s general chair, explains, that doesn’t mean that the field has stood still.

Graph neural networks (GNNs) are machine learning models that produce embeddings, or vector representations, of graph nodes that capture information about the nodes’ relationships to other nodes. They can be used for graph-related tasks, such as predicting edges or labeling nodes, but they can also be used for arbitrary downstream processing tasks, which simply take advantage of the information encoded in graph structure.

But within that general definition, “the implication of ‘graph neural network’ could be very different,” Sun says. “‘Graph neural network’ is a very broad term.”

For instance, Sun explains, traditional GNNs use message passing to produce embeddings. Each node in the graph is embedded, and then each node receives the embeddings of its neighboring nodes (the passed messages), which it integrates into an updated embedding. Typically, this process is performed two to three times, so that the embedding of each node captures information about its one- to three-hop neighborhood.

Related content
Information extraction, drug discovery, and software analysis are just a few applications of this versatile tool.

“If I do message passing, I can only collect information from my immediate neighbors,” Sun explains. “I need to go through many, many layers to model long-range dependencies. For some specific applications, like software analysis or simulation of physical systems, long-range dependency becomes critical.

“So people asked how we can change this architecture. They were inspired by the transformer” — the attention-based neural architecture that underlies today’s large language models — “because the transformer can be considered a special case of a graph neural network, where in the input window, every token can be connected to every other token.

“If every node can communicate with every node in the graph, you can easily address this long-range-dependency issue. But there will be two limitations. One is efficiency. For some graphs, there are many millions or even billions of nodes. You cannot efficiently talk to everyone else in the graph.”

The second concern, Sun explains, is that too much long-range connectivity undermines the very point of graphical representation. Graphs are useful because they capture meaningful relationships between nodes — which means leaving out the meaningless ones. If every node in the graph communicates with every other node, the meaningful connections are diluted.

Related content
In tests, new approach is 15 to 18 times as fast as predecessors.

To combat this problem, “people try to find a way to mimic the position encoding in the text setting or the image setting,” Sun says. “In the text setting, we just turned the position into some encoding. And later, in the computer vision domain, people said, ‘Okay, let's also do that with image patches.’ So, for example, we can break each image into six-by-six patches, and the relative position of those patches can be turned into a position encoding.

“So the next question is, in the graph setting, how we can get that natural kind of relative position? There are different ways to do that, like random walk — a very simple one. And also people try to do eigendecomposition, where we utilize eigenvectors to encode the relative position of those nodes. But eigendecomposition is very time consuming, so again, it comes down to the efficiency problem.”

Efficiency

Indeed, Sun explains, improving the efficiency of GNNs is itself an active area of research — from high-level algorithmic design down to the level of chip design.

“At the algorithm level, you might try to do some sort of sampling technique, just try to make the number of operations smaller,” she says. “Or maybe just design some more efficient algorithms to sparsify the graphs. For example, let's say we wanted to do some sort of similarity search, to keep the most similar nodes to each target node. Then people can design some smart index technology to make that part very fast.

“And in the inference stage, we can do knowledge distillation to distill a very complicated model, let's say a graph neural network, into a very simple graph neural network — or not necessarily a graph neural network, maybe just a very simple kind of structure, like an MLP [multilayer perceptron]. Then we can do the calculation much faster. Quantization can also be applied in the inference stage to make computation much faster.

Related content
Amazon’s George Karypis will give a keynote address on graph neural networks, a field in which “there is some fundamental theoretical stuff that we still need to understand.”

“So that's at the algorithm level. But nowadays people go deeper. Sometimes, if you want to solve the problem, you need to go to the system level. So people say, let's see how we can design this distributed system to accelerate the training, accelerate the inference.

“For example, in some cases, the memory becomes the main constraint. In this case, probably the only thing we can do is distribute the workload. Then the natural problems are how we can coordinate or synchronize the model parameters trained by each computational node. If we have to distribute the data to 10 machines, how can you coordinate with those 10 machines to make sure you only have one final version?

“And people now even go even deeper, to do the acceleration on the hardware side. So software-hardware co-design also becomes more and more popular. It requires people to really know so many different fields.

“By the way, at KDD, compared to many other machine learning conferences, real-world problems are always our top focus. In many cases, in order to solve the real-world problem, we have to talk to people with different backgrounds, because we cannot just wrap it up into the kind of ideal problems we solved when we were in high school.”

Applications

Beyond such general efforts to improve GNNs’ versatility and accuracy, however, there’s also new research on specific applications of GNN technology.

“There’s some work on how we can do causal analysis in the graph setting, meaning that the objects actually interfere with each other,” Sun explains. “This is quite different from the traditional setting: the patients in a drug study, for example, are independent from each other.

Related content
Novel cross-graph-attention and self-attention mechanisms enable state-of-the-art performance.

“There is also a new trend to combine deep representation learning with the causal inference. For example, how can we represent the treatment you try as a continuous vector, instead of just a binary treatment? Can we make the treatment timewise continuous — meaning that it's not just a static kind of one-time treatment? If I put the treatment 10 days later, how would the outcome compare to putting the treatment 20 days later? Time is very important; how can we inject that time information in?

“Graphs can also be considered a good data structure to describe multiagent dynamical systems — how those objects interact with each other in a dynamic network setting. And then, how can we incorporate the generative idea into graphs? Graph generation is very useful for many fields, such as in the drug industry.

“And then there are so many applications where we can benefit from large language models [LLMs]. For example, knowledge graph reasoning. We know that LLMs hallucinate, and reasoning on KGs is very rigorous. What would be a good combination of these two?

“With GNNs, there’s always new stuff. Graphs are just a very useful data structure to model our interconnected world.”

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, WA, Bellevue
At Amazon's FinTech organization, we are looking for an Applied Scientist to spearhead the development of Generative AI applications that will redefine the financial services industry. You will harness the transformative power of Large Language Models (LLMs) and multi-agent architectures to drive disruptive innovation across Finance domains such as fraud prevention, financial forecasting, and insurance. Because of our scale, your products will have hundreds of millions of dollars of impact. Key job responsibilities As an Applied Scientist on our team, you will be responsible for the research, design, development and evaluation of Generative AI models and agents. You will play a critical role in driving the development of LLM-based multi-agent architectures that automate complex workflows to delight our customers. You will handle Amazon-scale use cases with significant impact on our customers’ experiences. You will collaborate closely with cross-functional science, engineering and business partners to identify and deliver high-impact use cases for Generative AI. You will contribute to the broader research community by publishing your work in peer-reviewed conferences and journals. Check out this AWS Blog for some of our recent work in LLMs for financial application: https://aws.amazon.com/blogs/machine-learning/efficient-continual-pre-training-llms-for-financial-domains/
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.