Learning computational tasks from single examples

New “meta-learning” approach improves on the state of the art in “one-shot” learning.

In the past decade, deep-learning systems have proven remarkably successful at many artificial-intelligence tasks, but their applications tend to be narrow. A computer vision system trained to recognize cats and dogs, for instance, would need significant retraining to start recognizing sharks and sea turtles.

Meta-learning is a paradigm intended to turn machine learning systems into generalists. A meta-learning model is trained on a range of related tasks, but it learns not only how to perform those tasks but also how to learn to perform them. The idea is that it could then be adapted to new tasks with only a handful of labeled training examples, drastically reducing the need for labor-intensive data annotation.

At the (virtual) International Conference on Learning Representations, we will present an approach that improves performance on meta-learning tasks without increasing the data annotation requirements. The key idea is to adapt the meta-learning procedure so that it can leverage small sets of unlabeled data, in addition to the traditional labeled examples.

Meta-learning
In meta-learning, a machine learning model learns how to learn. During meta-training, the model is trained on a group of related tasks — using data from “support sets” — and tested using data from “query sets”. But the query sets are labeled, so the model can assess how effectively it's learning. During meta-testing, the model is again trained on a group of support sets, but it's evaluated on its ability to classify unlabeled query data.
Stacy Reilly

The intuition is that even without labels, these extra data still contain a lot of useful information. Suppose, for instance, that a meta-learning system trained on images of terrestrial animals (such as cats and dogs) is being adapted to recognize aquatic animals. Unlabeled images of aquatic animals (i.e., images that don’t indicate whether an animal is a shark or a sea turtle) still tell the model something about the learning task, such as the lighting conditions and background colors typical of underwater photos.

In experiments, we compared models trained through our approach to 16 different baselines on an object recognition meta-learning task. We found that our approach improved performance on one-shot learning, or learning a new object classification task from only a single labeled example, by 11% to 16%, depending on the architectures of the underlying neural networks.

Meta-learning

In conventional machine learning, a model is fed a body of labeled data and learns to correlate data features with the labels. Then it’s fed a separate body of test data and evaluated on how well it predicts the labels for that data. For evaluation purposes, the system designers have access to the test-data labels, but the model itself doesn’t.

Meta-learning adds another layer of complexity. During meta-training — the analogue of conventional training — the model learns to perform a range of related tasks. Each task has its own sets of training data and test data, and the model sees both. That is, part of its meta-training is learning how particular ways of responding to training data tend to affect its performance on test data.

During meta-testing, it is again trained on a range of tasks. These are related to but not identical to the tasks it saw during meta-training — recognizing aquatic animals, for instance, as opposed to terrestrial animals. Again, for each task, the model sees both training data and test data. But whereas, during meta-training, the test data were labeled, during meta-testing, the labels are unknown and must be predicted.

The terminology can get a bit confusing, so meta-learning researchers typically refer to the meta-learning “training” sets as support sets and the meta-learning “test” sets as query sets. During meta-training, the learning algorithm has access to the labels for both the support sets and the query sets, and it uses them to produce a global model. During meta-testing, it has access only to the labels for the support sets, which it uses to adapt the global model to each of the new tasks.

Our approach has two key innovations. First, during meta-training, we do not learn a single global model. Instead, we train an auxiliary neural network to produce a local model for each task, based on the corresponding support set. Second and more important, during meta-training we also train a second auxiliary network to leverage the unlabeled data of the query sets. Then, during meta-testing, we can use the query sets to fine-tune the local models, improving performance.

Leveraging unlabeled data

A machine learning system is governed by a set of parameters, and in meta-learning, meta-training optimizes them for a particular family of tasks — such as recognizing animals. During meta-testing or operational deployment, the model uses a handful of training examples to optimize those parameters for a new task.

A particular set of parameter values defines a point in a multidimensional space, and adaptation to a new task can be thought of as searching the space for the point representing the optimal new settings.

Meta-learning parameter space
In traditional meta-learning (left), the result of training is a model (φ) that can be adapted to a new set of related tasks (1 – 4). Adaptation involves searching for the optimal settings 1 – θ4) of the model parameters, based on a small set of labeled data (dl1 – dl4). Our system (right), by contrast, uses the labeled data and the available unlabeled data (x1 – x4) to better approximate those settings.

A traditional meta-learning system might begin its search at the point defined by the global model (φ in the figure above); this is the initialization step. Then, using the labeled data of the support set, it would work its way toward the settings that correspond to the new task; this is the adaptation step.

With our approach, by contrast, the initialization network selects a starting search location on the basis of the data in the support set 01(dl1) – θ04(dl4) in the figure above). Then it works its way toward the optimal settings using the unlabeled data of the query set (x1 – x4, above). More precisely, the second auxiliary neural network estimates the gradient implied by the query set data.

In the same way that the parameter settings of a machine learning model can be interpreted as a point in a representational space, so can the parameter settings and the resulting error rate on a particular data set. The multidimensional graph that results is like a topological map, with depressions that represent low error rates and peaks that represent high error rates. In this context, machine learning is a matter of identifying the slope of a depression — a gradient — and moving down it, toward a region of low error.

This is how many machine learning systems learn, but typically, they have the advantage of knowing, from training data labels, what the true error rate is for a given set of system parameters. In our case, because we’re relying on the unlabeled query set data, we can only guess at the true gradients.

That’s where the second auxiliary neural network comes in: it infers gradients from query set data. The system as a whole then uses the inferred gradients to fine-tune the initial parameter settings supplied by the first neural network.

The approach can be explained and justified through connections to two topics in theoretical machine learning, namely empirical Bayes and information bottleneck. These theoretical developments are beyond the scope of this blog post, but the interested reader can consult the full manuscript.

The associated software code has also been open-sourced as part of the Xfer repository.

Although our system beat all 16 baselines on the task of one-shot learning, there were several baseline systems that outperformed it on five-shot learning, or learning with five examples per new task. The approaches used by those baselines are complementary to our approach, and we believe that combining approaches could yield even lower error rates. Going forward, that’s one of several extensions of this work that we will be pursuing.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.