Learning to learn learning-rate schedules

In a series of papers, Amazon researchers performed a theoretical analysis of a simplified problem that led to a learnable learning-rate scheduler, applied that scheduler to a more complex neural model, and distilled the results into a practical algorithm.

Training a machine learning model can be thought of as exploring a landscape that maps settings of the model parameters against average error rate. The goal of training is to find the bottom of the lowest basin in the landscape, or the parameter settings that yield the lowest error rate or “loss” value.

A critical hyperparameter during training is the learning rate, which determines how big an effect the learning from a given batch of training data can have on a model’s parameter settings. It’s common to vary the learning rate throughout training: for instance, we might use a high learning rate at the outset to rapidly explore the whole landscape but slow the learning rate over time to ensure that we don’t leap over a global minimum.

Varying the learning rate is known as learning-rate scheduling, and it’s instrumental in achieving stable convergence and maximum accuracy. Yet crafting optimal schedules often relies on painstaking trial-and-error experimentation. As models grow more complex, manual tuning becomes increasingly unscalable, and human-designed schedules fail to respond to intricate details of the loss landscape, model parameters, and dataset.

Related content
Paper presents a criterion for halting the hyperparameter optimization process.

At Amazon, we are developing algorithms that can learn to schedule by harnessing data from past experiments. In a sequence of recent papers, we describe three phases of our research:

  1. Deriving stability guarantees for a simplified problem (non-negative-matrix factorization) and using them to develop a learnable scheduler;
  2. Extending that approach to deep neural networks; and
  3. Distilling the results into an efficient heuristic scheduler.

Analyzing stochastic non-negative-matrix factorization

In the first paper, “Efficient learning rate schedules for stochastic non-negative matrix factorization via reinforcement learning”, which we presented at ICLR 2023, we analyze stochastic non-negative-matrix factorization (NMF), a well-studied unsupervised-learning technique. NMF involves decomposing a non-negative matrix into two low-rank non-negative factor matrices.

Due to its popularity and mathematical simplicity, NMF served as an appealing testbed before we tackled more-complex models. Interestingly, our way of posing this well-studied matrix decomposition problem as a learning problem is related to the popular parameter-efficient fine-tuning (PEFT) methods that are used today for more-efficient compression and training of large language models.

In our first paper, we considered an optimization scheme for NMF that uses stochastic gradient descent — the standard machine learning algorithm — to minimize the difference between the original matrix and the matrix reconstituted from the factor matrices. To measure distance, we used the Frobenius norm, which is the square root of the sum of the squares of the individual differences for all matrix entries.

Related content
Syne Tune supports multiple backends, single-fidelity and multi-fidelity (early-exit) optimization algorithms, and hyperparameter transfer learning.

Assuming noisy gradients — that is, noisy estimations of slopes in the loss landscape — we established an upper bound for learning rates that guarantee stability, or convergence to a local minimum under repeated training epochs.

This yielded valuable insights. First, it quantified precisely how the learning rate controls trade-offs between convergence speed and potential divergence. Second, it showed that stability can be assured through proper learning rate initialization and clipping, or capping the extent to which any one model parameter can be modified during model updates.

With convergence guarantees in hand, we shifted our focus to learning what schedules may work well for specific problems. Reinforcement-learning (RL) agents search for and generate sequences of decisions that should lead to a better end state. This can be directly applied to learning-rate schedules that maximize convergence speed, while respecting stability bounds.

Empirically, the automated schedules our RL agent discovered consistently outperformed popular heuristics — such as step decay, which systematically lowers the learning rate after successive epochs — on NMF tasks. This provided a promising proof-of-concept for meta-learned scheduling in simplified domains where stability can be analytically assured.

Tackling deep-neural-network optimization

Given what we had learned about using RL for generating NMF schedules, we next sought to extend the adaptive-scheduling paradigm to deep neural networks. Unfortunately, deriving theoretical guarantees is vastly more difficult for complex nonconvex neural training objectives. Without assurances of stability, the optimization landscape becomes even more treacherous.

Related content
Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

Nevertheless, in another 2023 ICLR paper, “Learned learning rate schedules for deep neural network training using reinforcement learning”, we hypothesized that data-driven scheduling could still improve on hand-tuned learning rates and schedules. We used the reinforcement-learning framework we’d developed for NMF to generate schedules for computer vision and natural-language-processing tasks.

The automated schedules successfully reduced training time and improved generalization compared to standard heuristics such as cosine annealing. This demonstrated the empirical viability of our approach even in the absence of stability guarantees. By learning online from data, the scheduler adapted to nuances of the loss landscape and gradient trajectories.

But using RL to find optimal schedules for this problem is still expensive — and it becomes more expensive as model and data sizes increase. So our next step was to distill our approach into a simple and usable algorithm.

The GreedyLR scheduler

At this year’s Conference on Pattern Recognition and Machine Learning (PRML), we won the best-presentation award for a lightweight learned scheduler called GreedyLR that sets the learning rate based on recent improvements in the training loss. In comparisons with popular scheduler and optimizer combinations, GreedyLR performed equivalently or better more than 90% of the time. It also enabled faster convergence than techniques like stochastic line search that adjust the learning rate by solving optimization problems during training.

Related content
Method presented to ICML workshop works with any machine learning model and fairness criterion.

In each training epoch, GreedyLR adapts the learning rate based on changes in the validation loss. Its core logic is simple: increase the learning rate if the loss improves and decrease it if the loss worsens. But GreedyLR employs additional techniques to make this greedy heuristic work well in practice:

  • Its patience parameter prevents overreaction to noisy loss fluctuations.
  • A smoothing window calculates the rolling-average validation loss for more-robust comparisons.
  • Thresholds prevent needless updates when the loss change is insignificant.
  • Cooldown and warmup stages continue increasing or decreasing the learning rate even if the loss trend reverses.
  • Configurable upper and lower bounds on the learning-rate range enable it to benefit from human intuition without sacrificing the ability to explore counterintuitive methods.

Overall, these enhancements make GreedyLR respond intelligently to trends in the loss rather than reacting impulsively. The algorithm tunes the learning rate adaptively during training to accelerate convergence without compromising stability.

Learning-rate schedule.16x9.png
A patience parameter, a smoothing window, thresholding, cooldown and warmup stages, and configurable upper and lower learning-rate bounds make GreedyLR respond intelligently to trends in the loss rather than reacting impulsively.

In our experiments, we found that GreedyLR is able to produce diverse, dynamic schedules, as shown in the figures below. Also shown below are standard schedules such as linear, constant, and cosine decay that are popular today:

Learning-rate results.png
Learning-rate schedules produced by GreedyLR (red), compared to those produced by several popular scheduling approaches.

GreedyLR achieved faster convergence, especially for large models, making it a promising general-purpose scheduler. It also performed better than more-advanced methods such as hypergradient descent, which can be considered a first-order version of GreedyLR. While hypergradient descent tries to achieve faster convergence by using gradient descent to learn one learning rate per parameter or parameter group, GreedyLR just uses one global, reactive learning rate. This is particularly interesting since you need a billion learning rates for a billion-parameter model in hypergradient descent, versus a single learning rate for GreedyLR.

GreedyLR loss history.png
Loss histories comparing GreedyLR (black) with a stochastic-gradient-descent baseline (red) and per-parameter (green) and per-group (blue) hypergradient descent.

Conclusion and future outlook

Together, these contributions demonstrate the potential for learned optimizers to accelerate deep learning. By automatically adapting to training dynamics, they can find more-optimal solutions than human-designed algorithms reliant on rules of thumb. The ease of use and consistent gains from GreedyLR make it a compelling, general-purpose scheduler ready for wide adoption. We plan to continue improving the efficiency of our learning-based methods to further enhance productivity for deep-learning practitioners.

Research areas

Related content

US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, VA, Herndon
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team is seeking an experienced Delivery Practice Manager (DPM) to join our ProServe Shared Delivery Team (SDT) at Amazon Web Services (AWS). In this role, you'll manage a team of ProServe Delivery Consultants while supporting AWS enterprise customers through transformative projects. You'll leverage your IT and/or Management Consulting background to serve as a strategic advisor to customers, partners, and internal AWS teams. As a DPM you will be responsible for building and managing a team of Delivery Consultants and/or Engagement Managers working with customers and partners to architect and implement innovative solutions. You’ll routinely engage with Director, C-level executives, and governing boards, whilst being responsible for opportunity capture and driving engagement delivery. You’ll work closely with partner teams; drive business development initiatives through thought leadership; provide portfolio guidance and oversight; and meet and exceed customer satisfaction targets. As a DPM you are primarily focused directly or through their teams, on understanding and defining business outcomes for customers by building trust, identifying applicable AWS Professional Services offerings, and creating proposals and SOW’s. Your experience gained leading teams within the technology sector, will equip you with the ability to optimize team performance through implementing tailored people development plans, ensuring your teams are aligned to customer needs, and have the skills and capacity to address customer outcomes. Possessing the ability to translate technical concepts into business value for customers and then talk in technical depth with teams, you will cultivate strong customer, Amazon Global Sales (AGS), and ProServe team relationships which enables exceptional business performance. DPMs success is primarily measured by consistently delivering customer engagements by supporting sales through scoping technical requirements for an engagement, delivering engagements on time, within budget, and exceeding customer expectations. They will hold the Practice total utilization goal and be responsible for optimizing team performance. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities • Building and managing a high-performing team of Delivery Consultants • Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to deploy solutions and provide input on new features • Developing and overseeing the implementation of innovative, forward-looking IT strategies for customers • Managing practice P&L, ensuring on-time and within-budget delivery of customer engagements • Driving business development initiatives and exceed customer satisfaction targets
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.