Learning to learn learning-rate schedules

In a series of papers, Amazon researchers performed a theoretical analysis of a simplified problem that led to a learnable learning-rate scheduler, applied that scheduler to a more complex neural model, and distilled the results into a practical algorithm.

Training a machine learning model can be thought of as exploring a landscape that maps settings of the model parameters against average error rate. The goal of training is to find the bottom of the lowest basin in the landscape, or the parameter settings that yield the lowest error rate or “loss” value.

A critical hyperparameter during training is the learning rate, which determines how big an effect the learning from a given batch of training data can have on a model’s parameter settings. It’s common to vary the learning rate throughout training: for instance, we might use a high learning rate at the outset to rapidly explore the whole landscape but slow the learning rate over time to ensure that we don’t leap over a global minimum.

Varying the learning rate is known as learning-rate scheduling, and it’s instrumental in achieving stable convergence and maximum accuracy. Yet crafting optimal schedules often relies on painstaking trial-and-error experimentation. As models grow more complex, manual tuning becomes increasingly unscalable, and human-designed schedules fail to respond to intricate details of the loss landscape, model parameters, and dataset.

Related content
Paper presents a criterion for halting the hyperparameter optimization process.

At Amazon, we are developing algorithms that can learn to schedule by harnessing data from past experiments. In a sequence of recent papers, we describe three phases of our research:

  1. Deriving stability guarantees for a simplified problem (non-negative-matrix factorization) and using them to develop a learnable scheduler;
  2. Extending that approach to deep neural networks; and
  3. Distilling the results into an efficient heuristic scheduler.

Analyzing stochastic non-negative-matrix factorization

In the first paper, “Efficient learning rate schedules for stochastic non-negative matrix factorization via reinforcement learning”, which we presented at ICLR 2023, we analyze stochastic non-negative-matrix factorization (NMF), a well-studied unsupervised-learning technique. NMF involves decomposing a non-negative matrix into two low-rank non-negative factor matrices.

Due to its popularity and mathematical simplicity, NMF served as an appealing testbed before we tackled more-complex models. Interestingly, our way of posing this well-studied matrix decomposition problem as a learning problem is related to the popular parameter-efficient fine-tuning (PEFT) methods that are used today for more-efficient compression and training of large language models.

In our first paper, we considered an optimization scheme for NMF that uses stochastic gradient descent — the standard machine learning algorithm — to minimize the difference between the original matrix and the matrix reconstituted from the factor matrices. To measure distance, we used the Frobenius norm, which is the square root of the sum of the squares of the individual differences for all matrix entries.

Related content
Syne Tune supports multiple backends, single-fidelity and multi-fidelity (early-exit) optimization algorithms, and hyperparameter transfer learning.

Assuming noisy gradients — that is, noisy estimations of slopes in the loss landscape — we established an upper bound for learning rates that guarantee stability, or convergence to a local minimum under repeated training epochs.

This yielded valuable insights. First, it quantified precisely how the learning rate controls trade-offs between convergence speed and potential divergence. Second, it showed that stability can be assured through proper learning rate initialization and clipping, or capping the extent to which any one model parameter can be modified during model updates.

With convergence guarantees in hand, we shifted our focus to learning what schedules may work well for specific problems. Reinforcement-learning (RL) agents search for and generate sequences of decisions that should lead to a better end state. This can be directly applied to learning-rate schedules that maximize convergence speed, while respecting stability bounds.

Empirically, the automated schedules our RL agent discovered consistently outperformed popular heuristics — such as step decay, which systematically lowers the learning rate after successive epochs — on NMF tasks. This provided a promising proof-of-concept for meta-learned scheduling in simplified domains where stability can be analytically assured.

Tackling deep-neural-network optimization

Given what we had learned about using RL for generating NMF schedules, we next sought to extend the adaptive-scheduling paradigm to deep neural networks. Unfortunately, deriving theoretical guarantees is vastly more difficult for complex nonconvex neural training objectives. Without assurances of stability, the optimization landscape becomes even more treacherous.

Related content
Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

Nevertheless, in another 2023 ICLR paper, “Learned learning rate schedules for deep neural network training using reinforcement learning”, we hypothesized that data-driven scheduling could still improve on hand-tuned learning rates and schedules. We used the reinforcement-learning framework we’d developed for NMF to generate schedules for computer vision and natural-language-processing tasks.

The automated schedules successfully reduced training time and improved generalization compared to standard heuristics such as cosine annealing. This demonstrated the empirical viability of our approach even in the absence of stability guarantees. By learning online from data, the scheduler adapted to nuances of the loss landscape and gradient trajectories.

But using RL to find optimal schedules for this problem is still expensive — and it becomes more expensive as model and data sizes increase. So our next step was to distill our approach into a simple and usable algorithm.

The GreedyLR scheduler

At this year’s Conference on Pattern Recognition and Machine Learning (PRML), we won the best-presentation award for a lightweight learned scheduler called GreedyLR that sets the learning rate based on recent improvements in the training loss. In comparisons with popular scheduler and optimizer combinations, GreedyLR performed equivalently or better more than 90% of the time. It also enabled faster convergence than techniques like stochastic line search that adjust the learning rate by solving optimization problems during training.

Related content
Method presented to ICML workshop works with any machine learning model and fairness criterion.

In each training epoch, GreedyLR adapts the learning rate based on changes in the validation loss. Its core logic is simple: increase the learning rate if the loss improves and decrease it if the loss worsens. But GreedyLR employs additional techniques to make this greedy heuristic work well in practice:

  • Its patience parameter prevents overreaction to noisy loss fluctuations.
  • A smoothing window calculates the rolling-average validation loss for more-robust comparisons.
  • Thresholds prevent needless updates when the loss change is insignificant.
  • Cooldown and warmup stages continue increasing or decreasing the learning rate even if the loss trend reverses.
  • Configurable upper and lower bounds on the learning-rate range enable it to benefit from human intuition without sacrificing the ability to explore counterintuitive methods.

Overall, these enhancements make GreedyLR respond intelligently to trends in the loss rather than reacting impulsively. The algorithm tunes the learning rate adaptively during training to accelerate convergence without compromising stability.

Learning-rate schedule.16x9.png
A patience parameter, a smoothing window, thresholding, cooldown and warmup stages, and configurable upper and lower learning-rate bounds make GreedyLR respond intelligently to trends in the loss rather than reacting impulsively.

In our experiments, we found that GreedyLR is able to produce diverse, dynamic schedules, as shown in the figures below. Also shown below are standard schedules such as linear, constant, and cosine decay that are popular today:

Learning-rate results.png
Learning-rate schedules produced by GreedyLR (red), compared to those produced by several popular scheduling approaches.

GreedyLR achieved faster convergence, especially for large models, making it a promising general-purpose scheduler. It also performed better than more-advanced methods such as hypergradient descent, which can be considered a first-order version of GreedyLR. While hypergradient descent tries to achieve faster convergence by using gradient descent to learn one learning rate per parameter or parameter group, GreedyLR just uses one global, reactive learning rate. This is particularly interesting since you need a billion learning rates for a billion-parameter model in hypergradient descent, versus a single learning rate for GreedyLR.

GreedyLR loss history.png
Loss histories comparing GreedyLR (black) with a stochastic-gradient-descent baseline (red) and per-parameter (green) and per-group (blue) hypergradient descent.

Conclusion and future outlook

Together, these contributions demonstrate the potential for learned optimizers to accelerate deep learning. By automatically adapting to training dynamics, they can find more-optimal solutions than human-designed algorithms reliant on rules of thumb. The ease of use and consistent gains from GreedyLR make it a compelling, general-purpose scheduler ready for wide adoption. We plan to continue improving the efficiency of our learning-based methods to further enhance productivity for deep-learning practitioners.

Research areas

Related content

IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Are you excited about customer-facing research and reinventing the way people think about long-held assumptions? At Amazon, we are constantly inventing and re-inventing to be the most customer-centric company in the world. To get there, we need exceptionally talented, bright, and driven people. Amazon is one of the most recognizable brand names in the world and we distribute millions of products each year to our loyal customers. A day in the life The ideal candidate will be responsible for quantitative data analysis, building models and prototypes for supply chain systems, and developing state-of-the-art optimization algorithms to scale. This team plays a significant role in various stages of the innovation pipeline from identifying business needs, developing new algorithms, prototyping/simulation, to implementation by working closely with colleagues in engineering, product management, operations, retail and finance. As a senior member of the research team, you will play an integral part on our Supply Chain team with the following technical and leadership responsibilities: * Interact with engineering, operations, science and business teams to develop an understanding and domain knowledge of processes, system structures, and business requirements * Apply domain knowledge and business judgment to identify opportunities and quantify the impact aligning research direction to business requirements and make the right judgment on research project prioritization * Develop scalable mathematical models to derive optimal or near-optimal solutions to existing and new supply chain challenges * Create prototypes and simulations to test devised solutions * Advocate technical solutions to business stakeholders, engineering teams, as well as executive-level decision makers * Work closely with engineers to integrate prototypes into production system * Create policy evaluation methods to track the actual performance of devised solutions in production systems, identify areas with potential for improvement and work with internal teams to improve the solution with new features * Mentor team members for their career development and growth * Present business cases and document models, analyses, and their results in order to influence important decisions About the team Our organization leads the innovation of Amazon’s ultra-fast grocery product initiatives. Our key vision is to transform the online grocery experience and provide a wide grocery selection in order to be the primary destination to fulfill customer’s food shopping needs. We are a team of passionate tech builders who work endlessly to make life better for our customers through amazing, thoughtful, and creative new grocery shopping experiences. To succeed, we need senior technical leaders to forge a path into the future by building innovative, maintainable, and scalable systems.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.