Lessons learned from 10 years of DynamoDB

Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

Amazon DynamoDB is one of the most popular NoSQL database offerings on the Internet, designed for simplicity, predictability, scalability, and reliability. To celebrate DynamoDB’s 10th anniversary, the DynamoDB team wrote a paper describing lessons we’d learned in the course of expanding a fully managed cloud-based database system to hundreds of thousands of customers. The paper was presented at this year’s USENIX ATC conference.

The paper captures the following lessons that we have learned over the years:

  • Designing systems for predictability over absolute efficiency improves system stability. While components such as caches can improve performance, they should not introduce bimodality, in which the system has two radically different ways of responding to similar requests (e.g., one for cache misses and one for cache hits). Consistent behaviors ensure that the system is always provisioned to handle the unexpected. 
  • Adapting to customers’ traffic patterns to redistribute data improves customer experience. 
  • Continuously verifying idle data is a reliable way to protect against both hardware failures and software bugs in order to meet high durability goals. 
  • Maintaining high availability as a system evolves requires careful operational discipline and tooling. Mechanisms such as formal proofs of complex algorithms, game days (chaos and load tests), upgrade/downgrade tests, and deployment safety provide the freedom to adjust and experiment with the code without the fear of compromising correctness. 
Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Before we dig deeper into these topics, a little terminology. A DynamoDB table is a collection of items (e.g., products), and each item is a collection of attributes (e.g., name, price, category, etc.). Each item is uniquely identified by its primary key. In DynamoDB, tables are typically partitioned, or divided into smaller sub-tables, which are assigned to nodes. A node is a set of dedicated computational resources — a virtual machine — running on a single server in a datacenter.

DynamoDB stores three copies of each partition, in different availability zones. This makes the partition highly available and durable because the availability zones’ storage resources share nothing and are substantially independent. For instance, we wouldn’t assign a partition and one of its copies to nodes that share a power supply, because a power outage would take both of them offline. The three copies of the same partition are known as a replication group, and there is a leader for the group that is responsible for replicating all the customer mutations and serving strongly consistent reads.

DynamoDB architecture.png
The DynamoDB architecture, including a request router, the partition metadata system, and storage nodes in different availability zones (AZs).

Those definitions in hand, let’s turn to our lessons learned.

Predictability over absolute efficiency

DynamoDB employs a lot of metadata caches in order to reduce latency. One of those caches stores the routing metadata for data requests. This cache is deployed on a fleet of thousands of request routers, DynamoDB’s front-end service.

In the original implementation, when the request router received the first request for a table, it downloaded the routing information for the entire table and cached it locally. Since the configuration information about partition replicas rarely changed, the cache hit rate was approximately 99.75%.

Related content
How Alexa scales machine learning models to millions of customers.

This was an amazing hit rate. However, on the flip side, the fallback mechanism for this cache was to hit the metadata table directly. When the cache becomes ineffective, the metadata table needs to instantaneously scale from handling 0.25% of requests to 100%. The sudden increase in traffic can cause the metadata table to fail, causing cascading failure in other parts of the system. To mitigate against such failures, we redesigned our caches to behave predictably.

First, we built an in-memory datastore called MemDS, which significantly reduced request routers’ and other metadata clients’ reliance on local caches. MemDS stores all the routing metadata in a highly compressed manner and replicates it across a fleet of servers. MemDS scales horizontally to handle all incoming requests to DynamoDB.

Second, we deployed a new local cache that avoids the bimodality of the original cache. All requests, even if satisfied by the local cache, are asynchronously sent to the MemDS. This ensures that the MemDS fleet is always serving a constant volume of traffic, regardless of cache hit or miss. The regular exercise of the fallback code helps prevent surprises during fallback.

DDB-MemDS.png
DynamoDB architecture with MemDS.

Unlike conventional local caches, MemDS sees traffic that is proportional to the customer traffic seen by the service; thus, during cache failures, it does not see a sudden amplification of traffic. Doing constant work removed the need for complex logic to handle edge cases around cache misses and reduced the reliance on local caches, improving system stability.

Reshaping partitioning based on traffic

Partitions offer a way to dynamically scale both the capacity and performance of tables. In the original DynamoDB release, customers explicitly specified the throughput that a table required in terms of read capacity units (RCUs) and write capacity units (WCUs). The original system assigned partitions to nodes based on both available space and computational capacity.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

As the demands on a table changed (because it grew in size or because the load increased), partitions could be further split to allow the table to scale elastically. Partition abstraction proved really valuable and continues to be central to the design of DynamoDB.

However, the early version of DynamoDB assigned both space and capacity to individual partitions on the basis of size, evenly distributing computational resources across table entries. This led to challenges of “hot partitions” and throughput dilution.

Hot partitions happened because customer workloads were not uniformly distributed and kept hitting a subset of items. Throughput dilution happened when partitions that had been split to handle increased load ended up with so few keys that they could quickly max out their meager allocated capacity.

Our initial response to these challenges was to add bursting and adaptive capacity (along with other features such as split for consumption) to DynamoDB. This line of work also led to the launch of on-demand tables.

Bursting is a way to absorb temporal spikes in workloads at a partition level. It’s based on the observation that not all partitions hosted by a storage node use their allocated throughput simultaneously.

Related content
Amazon researchers describe new method for distributing database tables across servers.

The idea is to let applications tap into unused capacity at a partition level on a best-effort basis to absorb short-lived spikes. DynamoDB still maintains workload isolation by ensuring that a partition can burst only if there is unused throughput at the node level.

DynamoDB also launched adaptive capacity to handle long-lived spikes that cannot be absorbed by the burst capacity. Adaptive capacity monitors traffic patterns and repartitions tables so that heavily accessed items reside on different nodes.

Both bursting and adaptive capacity had limitations, however. Bursting was helpful only for short-lived spikes in traffic, and it was dependent on nodes’ having enough throughput to support it. Adaptive capacity was reactive and kicked in only after transmission rates had been throttled down to avoid overloads.

To address these limitations, the DynamoDB team replaced adaptive capacity with global admission control (GAC). GAC builds on the idea of token buckets, in which bandwidth is allocated to network nodes as tokens, and the nodes “cash in” tokens in order to transmit data. Each request router maintains a local token bucket and communicates with GAC to replenish tokens at regular intervals (on the order of every few seconds). For an extra layer of defense, DynamoDB also uses token buckets at the partition level.

Continuous verification 

To provide durability and crash recovery, DynamoDB uses write-ahead logs, which record data writes before they occur. In the event of a crash, DynamoDB can use the write-ahead logs to reconstruct lost data writes, bringing partitions up to date.

Write-ahead logs are stored in all three replicas of a partition. For higher durability, the write-ahead logs are periodically archived to S3, an object store that is designed for more than 99.99% (in fact, 11 nines) durability. Each replica contains the most recent write-ahead logs, which are usually waiting to be archived. The unarchived logs are typically a few hundred megabytes in size.

Storage replica vs. log replica.png
Healing a storage replica by copying the B-tree can take several minutes, while adding a log replica, which takes only a few seconds, ensures that there is no impact on durability.

DynamoDB continuously verifies data at rest. Our goal is to detect any silent data errors or “bit rot” — bit errors caused by degradation of the storage medium. An example of continuous verification is the scrub process.

The scrub process verifies two things: that all three copies in a replication group have the same data and that the live replicas match a reference replica built offline using the archived write-ahead-log entries.

The verification is done by computing the checksum of the live replica and matching that with a snapshot of the reference replica. A similar technique is used to verify replicas of global tables. Over the years, we have learned that continuous verification of data at rest is the most reliable method of protecting against hardware failures, silent data corruption, and even software bugs.

Availability

DynamoDB regularly tests its resilience to node, rack, and availability zone (AZ) failures. For example, to test the availability and durability of the overall service, DynamoDB performs power-off tests. Using realistic simulated traffic, a job scheduler powers off random nodes. At the end of all the power-off tests, the test tools verify that the data stored in the database is logically valid and not corrupted.

Related content
Amazon Athena reduces query execution time by 14% by eliminating redundant operations.

The first point about availability is that it needs to be measurable. DynamoDB is designed for 99.999% availability for global tables and 99.99% availability for regional tables. To ensure that these goals are being met, DynamoDB continuously monitors availability at the service and table levels. The tracked availability data is used to estimate customer-perceived availability trends and trigger alarms if the number of errors that customers see crosses a certain threshold.

These alarms are called customer-facing alarms (CFAs). The goal of these alarms is to report any availability-related problems and proactively mitigate them either automatically or through operator intervention. The key point to note here is that availability is measured not only on the server side but on the client side.

We also use two sets of clients to measure the user-perceived availability. The first set of clients is internal Amazon services using DynamoDB as the data store. These services share the availability metrics for DynamoDB API calls as observed by their software.

The second set of clients is our DynamoDB canary applications. These applications are run from every AZ in the region, and they talk to DynamoDB through every public endpoint. Real application traffic allows us to reason about DynamoDB availability and latencies as seen by our customers. The canary applications offer a good representation of what our customers might be experiencing both long and short term.

The second point is that read and write availability need to be handled differently. A partition’s write availability depends on the health of its leader and of its write quorum, meaning two out of the three replicas from different AZs. A partition remains available as long as there are enough healthy replicas for a write quorum and a leader.

Related content
“Anytime query” approach adapts to the available resources.

In a large service, hardware failures such as memory and disk failures are common. When a node fails, all replication groups hosted on the node are down to two copies. The process of healing a storage replica can take several minutes because the repair process involves copying the B-tree — a data structure that maps partitions to storage locations — and write-ahead logs.

Upon detecting an unhealthy storage replica, the leader of a replication group adds a log replica to ensure there is no impact on durability. Adding a log replica takes only a few seconds, because the system has to copy only the most recent write-ahead logs from a healthy replica; reconstructing the more memory-intensive B-tree can wait. Quick healing of affected replication groups using log replicas thus ensures the high durability of the most recent writes. Adding a log replica is the fastest way to ensure that the write quorum of the group is always met. This minimizes disruption to write availability due to an unhealthy write quorum. The leader replica serves consistent reads.

Introducing log replicas was a big change to the system, but the Paxos consensus protocol, which is formally provable, gave us the confidence to safely tweak and experiment with the system to achieve higher availability. We have been able to run millions of Paxos groups in a region with log replicas. Eventually, consistent reads can be served by any of the replicas. In case a leader fails, other replicas detect its failure and elect a new leader to minimize disruptions to the availability of consistent reads.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
KR, Seoul
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.