Lessons learned from 10 years of DynamoDB

Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

Amazon DynamoDB is one of the most popular NoSQL database offerings on the Internet, designed for simplicity, predictability, scalability, and reliability. To celebrate DynamoDB’s 10th anniversary, the DynamoDB team wrote a paper describing lessons we’d learned in the course of expanding a fully managed cloud-based database system to hundreds of thousands of customers. The paper was presented at this year’s USENIX ATC conference.

The paper captures the following lessons that we have learned over the years:

  • Designing systems for predictability over absolute efficiency improves system stability. While components such as caches can improve performance, they should not introduce bimodality, in which the system has two radically different ways of responding to similar requests (e.g., one for cache misses and one for cache hits). Consistent behaviors ensure that the system is always provisioned to handle the unexpected. 
  • Adapting to customers’ traffic patterns to redistribute data improves customer experience. 
  • Continuously verifying idle data is a reliable way to protect against both hardware failures and software bugs in order to meet high durability goals. 
  • Maintaining high availability as a system evolves requires careful operational discipline and tooling. Mechanisms such as formal proofs of complex algorithms, game days (chaos and load tests), upgrade/downgrade tests, and deployment safety provide the freedom to adjust and experiment with the code without the fear of compromising correctness. 
Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Before we dig deeper into these topics, a little terminology. A DynamoDB table is a collection of items (e.g., products), and each item is a collection of attributes (e.g., name, price, category, etc.). Each item is uniquely identified by its primary key. In DynamoDB, tables are typically partitioned, or divided into smaller sub-tables, which are assigned to nodes. A node is a set of dedicated computational resources — a virtual machine — running on a single server in a datacenter.

DynamoDB stores three copies of each partition, in different availability zones. This makes the partition highly available and durable because the availability zones’ storage resources share nothing and are substantially independent. For instance, we wouldn’t assign a partition and one of its copies to nodes that share a power supply, because a power outage would take both of them offline. The three copies of the same partition are known as a replication group, and there is a leader for the group that is responsible for replicating all the customer mutations and serving strongly consistent reads.

DynamoDB architecture.png
The DynamoDB architecture, including a request router, the partition metadata system, and storage nodes in different availability zones (AZs).

Those definitions in hand, let’s turn to our lessons learned.

Predictability over absolute efficiency

DynamoDB employs a lot of metadata caches in order to reduce latency. One of those caches stores the routing metadata for data requests. This cache is deployed on a fleet of thousands of request routers, DynamoDB’s front-end service.

In the original implementation, when the request router received the first request for a table, it downloaded the routing information for the entire table and cached it locally. Since the configuration information about partition replicas rarely changed, the cache hit rate was approximately 99.75%.

Related content
How Alexa scales machine learning models to millions of customers.

This was an amazing hit rate. However, on the flip side, the fallback mechanism for this cache was to hit the metadata table directly. When the cache becomes ineffective, the metadata table needs to instantaneously scale from handling 0.25% of requests to 100%. The sudden increase in traffic can cause the metadata table to fail, causing cascading failure in other parts of the system. To mitigate against such failures, we redesigned our caches to behave predictably.

First, we built an in-memory datastore called MemDS, which significantly reduced request routers’ and other metadata clients’ reliance on local caches. MemDS stores all the routing metadata in a highly compressed manner and replicates it across a fleet of servers. MemDS scales horizontally to handle all incoming requests to DynamoDB.

Second, we deployed a new local cache that avoids the bimodality of the original cache. All requests, even if satisfied by the local cache, are asynchronously sent to the MemDS. This ensures that the MemDS fleet is always serving a constant volume of traffic, regardless of cache hit or miss. The regular exercise of the fallback code helps prevent surprises during fallback.

DDB-MemDS.png
DynamoDB architecture with MemDS.

Unlike conventional local caches, MemDS sees traffic that is proportional to the customer traffic seen by the service; thus, during cache failures, it does not see a sudden amplification of traffic. Doing constant work removed the need for complex logic to handle edge cases around cache misses and reduced the reliance on local caches, improving system stability.

Reshaping partitioning based on traffic

Partitions offer a way to dynamically scale both the capacity and performance of tables. In the original DynamoDB release, customers explicitly specified the throughput that a table required in terms of read capacity units (RCUs) and write capacity units (WCUs). The original system assigned partitions to nodes based on both available space and computational capacity.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

As the demands on a table changed (because it grew in size or because the load increased), partitions could be further split to allow the table to scale elastically. Partition abstraction proved really valuable and continues to be central to the design of DynamoDB.

However, the early version of DynamoDB assigned both space and capacity to individual partitions on the basis of size, evenly distributing computational resources across table entries. This led to challenges of “hot partitions” and throughput dilution.

Hot partitions happened because customer workloads were not uniformly distributed and kept hitting a subset of items. Throughput dilution happened when partitions that had been split to handle increased load ended up with so few keys that they could quickly max out their meager allocated capacity.

Our initial response to these challenges was to add bursting and adaptive capacity (along with other features such as split for consumption) to DynamoDB. This line of work also led to the launch of on-demand tables.

Bursting is a way to absorb temporal spikes in workloads at a partition level. It’s based on the observation that not all partitions hosted by a storage node use their allocated throughput simultaneously.

Related content
Amazon researchers describe new method for distributing database tables across servers.

The idea is to let applications tap into unused capacity at a partition level on a best-effort basis to absorb short-lived spikes. DynamoDB still maintains workload isolation by ensuring that a partition can burst only if there is unused throughput at the node level.

DynamoDB also launched adaptive capacity to handle long-lived spikes that cannot be absorbed by the burst capacity. Adaptive capacity monitors traffic patterns and repartitions tables so that heavily accessed items reside on different nodes.

Both bursting and adaptive capacity had limitations, however. Bursting was helpful only for short-lived spikes in traffic, and it was dependent on nodes’ having enough throughput to support it. Adaptive capacity was reactive and kicked in only after transmission rates had been throttled down to avoid overloads.

To address these limitations, the DynamoDB team replaced adaptive capacity with global admission control (GAC). GAC builds on the idea of token buckets, in which bandwidth is allocated to network nodes as tokens, and the nodes “cash in” tokens in order to transmit data. Each request router maintains a local token bucket and communicates with GAC to replenish tokens at regular intervals (on the order of every few seconds). For an extra layer of defense, DynamoDB also uses token buckets at the partition level.

Continuous verification 

To provide durability and crash recovery, DynamoDB uses write-ahead logs, which record data writes before they occur. In the event of a crash, DynamoDB can use the write-ahead logs to reconstruct lost data writes, bringing partitions up to date.

Write-ahead logs are stored in all three replicas of a partition. For higher durability, the write-ahead logs are periodically archived to S3, an object store that is designed for more than 99.99% (in fact, 11 nines) durability. Each replica contains the most recent write-ahead logs, which are usually waiting to be archived. The unarchived logs are typically a few hundred megabytes in size.

Storage replica vs. log replica.png
Healing a storage replica by copying the B-tree can take several minutes, while adding a log replica, which takes only a few seconds, ensures that there is no impact on durability.

DynamoDB continuously verifies data at rest. Our goal is to detect any silent data errors or “bit rot” — bit errors caused by degradation of the storage medium. An example of continuous verification is the scrub process.

The scrub process verifies two things: that all three copies in a replication group have the same data and that the live replicas match a reference replica built offline using the archived write-ahead-log entries.

The verification is done by computing the checksum of the live replica and matching that with a snapshot of the reference replica. A similar technique is used to verify replicas of global tables. Over the years, we have learned that continuous verification of data at rest is the most reliable method of protecting against hardware failures, silent data corruption, and even software bugs.

Availability

DynamoDB regularly tests its resilience to node, rack, and availability zone (AZ) failures. For example, to test the availability and durability of the overall service, DynamoDB performs power-off tests. Using realistic simulated traffic, a job scheduler powers off random nodes. At the end of all the power-off tests, the test tools verify that the data stored in the database is logically valid and not corrupted.

Related content
Amazon Athena reduces query execution time by 14% by eliminating redundant operations.

The first point about availability is that it needs to be measurable. DynamoDB is designed for 99.999% availability for global tables and 99.99% availability for regional tables. To ensure that these goals are being met, DynamoDB continuously monitors availability at the service and table levels. The tracked availability data is used to estimate customer-perceived availability trends and trigger alarms if the number of errors that customers see crosses a certain threshold.

These alarms are called customer-facing alarms (CFAs). The goal of these alarms is to report any availability-related problems and proactively mitigate them either automatically or through operator intervention. The key point to note here is that availability is measured not only on the server side but on the client side.

We also use two sets of clients to measure the user-perceived availability. The first set of clients is internal Amazon services using DynamoDB as the data store. These services share the availability metrics for DynamoDB API calls as observed by their software.

The second set of clients is our DynamoDB canary applications. These applications are run from every AZ in the region, and they talk to DynamoDB through every public endpoint. Real application traffic allows us to reason about DynamoDB availability and latencies as seen by our customers. The canary applications offer a good representation of what our customers might be experiencing both long and short term.

The second point is that read and write availability need to be handled differently. A partition’s write availability depends on the health of its leader and of its write quorum, meaning two out of the three replicas from different AZs. A partition remains available as long as there are enough healthy replicas for a write quorum and a leader.

Related content
“Anytime query” approach adapts to the available resources.

In a large service, hardware failures such as memory and disk failures are common. When a node fails, all replication groups hosted on the node are down to two copies. The process of healing a storage replica can take several minutes because the repair process involves copying the B-tree — a data structure that maps partitions to storage locations — and write-ahead logs.

Upon detecting an unhealthy storage replica, the leader of a replication group adds a log replica to ensure there is no impact on durability. Adding a log replica takes only a few seconds, because the system has to copy only the most recent write-ahead logs from a healthy replica; reconstructing the more memory-intensive B-tree can wait. Quick healing of affected replication groups using log replicas thus ensures the high durability of the most recent writes. Adding a log replica is the fastest way to ensure that the write quorum of the group is always met. This minimizes disruption to write availability due to an unhealthy write quorum. The leader replica serves consistent reads.

Introducing log replicas was a big change to the system, but the Paxos consensus protocol, which is formally provable, gave us the confidence to safely tweak and experiment with the system to achieve higher availability. We have been able to run millions of Paxos groups in a region with log replicas. Eventually, consistent reads can be served by any of the replicas. In case a leader fails, other replicas detect its failure and elect a new leader to minimize disruptions to the availability of consistent reads.

Research areas

Related content

US, CA, Santa Clara
Amazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Generative AI, Large Language Model (LLM), Natural Language Understanding (NLU), Machine Learning (ML), Retrieval-Augmented Generation, Responsible AI, Agent, Evaluation, and Model Adaptation. As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding. The Science team at AWS Bedrock builds science foundations of Bedrock, which is a fully managed service that makes high-performing foundation models available for use through a unified API. We are adamant about continuously learning state-of-the-art NLP/ML/LLM technology and exploring creative ways to delight our customers. In our daily job we are exposed to large scale NLP needs and we apply rigorous research methods to respond to them with efficient and scalable innovative solutions. At AWS Bedrock, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging AWS resources, one of the world’s leading cloud companies and you’ll be able to publish your work in top tier conferences and journals. We are building a brand new team to help develop a new NLP service for AWS. You will have the opportunity to conduct novel research and influence the science roadmap and direction of the team. Come join this greenfield opportunity! About the team AWS Bedrock Science Team is a part of AWS Utility Computing AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. We’re working on the future. If you are seeking an iterative fast-paced environment where you can drive innovation, apply state-of-the-art technologies to solve extreme-scale real world delivery challenges, and provide visible benefit to end-users, this is your opportunity. Come work on the Amazon Prime Air team We're looking for outstanding scientists and engineers who combine superb technical, research and analytical capabilities with a demonstrated ability architect complex hardware, software, embedded, mobile and mission-critical systems to ensure they can be found compliant to DO-178C. This person must be comfortable working with a team of top-notch software, hardware and applied science Engineers. We’re looking for people who innovate and love solving hard problems. You will work hard, have fun, and of course, make history! Export License Control This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf. Key job responsibilities The manager of the High Fidelity Modeling group will lead a group of engineers and scientists that provide computational fluid dynamics modeling, as well as aerodynamic and other surrogate models used in flight simulation of the Prime Air drones.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, VA, Arlington
Are you passionate about programming languages, applying formal verification, program analysis, constraint-solving, and/or theorem proving to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Technical Responsibilities: - Interact with various teams to develop an understanding of their security and safety requirements. - Apply the acquired knowledge to build tools find problems, or show the absence of security/safety problems. - Implement these tools through the use of SAT, SMT, and various concepts from programming languages, theorem proving, formal verification and constraint solving. - Perform analysis of the customer systems using tools developed in-house or externally provided - Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. Leadership Responsibilities: - Can present and defend company-wide technical decisions to the internal technical community and represent the company effectively at technical conferences. - Functional thought leader, sought after for key tech decisions. Can successfully sell ideas to an executive level decision maker. - Mentors and trains the research scientist community on complex technical issues. AWS has the most services and more features within those services, than any other cloud provider–from infrastructure technologies like compute, storage, and databases–to emerging technologies, such as machine learning and artificial intelligence, data lakes and analytics, and Internet of Things. Whether its Identity features such as access management and sign on, cryptography, console, builder & developer tools, and even projects like automating all of our contractual billing systems, AWS Platform is always innovating with the customer in mind. The AWS Platform team sustains over 750 million transactions per second. We have a formal mentor search application that lets you find a mentor that works best for you based on location, job family, job level etc. Your manager can also help you find a mentor or two, because two is better than one. In addition to formal mentors, we work and train together so that we are always learning from one another, and we celebrate and support the career progression of our team members. Key job responsibilities Technical Responsibilities: - Interact with various teams to develop an understanding of their security and safety requirements. - Apply the acquired knowledge to build tools find problems, or show the absence of security/safety problems. - Implement these tools through the use of SAT, SMT, BDDs, and various concepts from programming languages, theorem proving, formal verification and constraint solving. - Perform analysis of the customer systems using tools developed in-house or externally provided - Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. Leadership Responsibilities: - Can present and defend company-wide technical decisions to the internal technical community and represent the company effectively at technical conferences. - Functional thought leader, sought after for key tech decisions. Can successfully sell ideas to an executive level decision maker. - Mentors and trains the research scientist community on complex technical issues. A day in the life You will be working on cutting edge technology related to formal methods, automated reasoning, automated testing, and adjacent areas. You will work with fellow applied scientists to solve challenging problems that provide value to customers by improving the quality of software. You will have an opportunity to publish your work. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. About the team The Automated Reasoning in Identity (ARI) team is growing fast. It works on applying automated reasoning techniques to services within AWS's Identity organization, building on initial successes of the Zelkova and Access Analyzer projects. The reach of AR within Identity is growing, with more scientists joining all the time.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of cutting-edge algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team