Low-precision arithmetic makes robot localization more efficient

Using different levels of precision for different arithmetic tasks reduces computational burden without compromising performance.

Simultaneous localization and mapping (SLAM) is the core technology of autonomous mobile robots. It involves simultaneously building a map of the robot’s environment and finding the robot’s location within that map.

SLAM is computationally intensive, and deploying it on resource-constrained robots — such as consumer household robots — generally requires techniques for making computations more tractable.

Related content
Two Alexa AI papers present novel methodologies that use vision and language understanding to improve embodied task completion in simulated environments.

One such technique is the use of low-precision floating-point arithmetic, or reducing the number of bits used to represent numbers with decimal points. The technique is popular in deep learning, where halving the number of bits (from the standard 32 to 16) can double computational efficiency with little effect on accuracy.

But applying low-precision arithmetic to SLAM is more complicated. Where deep-learning-based classification models are discrete-valued, SLAM involves solving a nonlinear optimization problem with continuous-valued functions, which require higher accuracy.

At Amazon, we’ve tackled this problem by designing a novel mixed-precision solver, which combines 64-bit (fp64), 32-bit (fp32), and 16-bit (fp16) precisions for nonlinear optimization problems in the SLAM algorithm. This innovation paves the way for faster and greener on-device navigation.

General framework

A SLAM algorithm has two key components: visual odometry and loop closure. Visual odometry gives real-time estimates of the robot’s pose, or its orientation and location on the map, based on the most recent observations. When the robot recognizes that it has arrived at a place that it previously visited, it closes the loop by globally correcting its map and its location estimate.

Related content
A model that estimates depth from 2-D images learns to adjust to differences between images produced by different cameras, reducing error by about 20%.

Both visual odometry and loop closure involve solving nonlinear optimization problems — bundle adjustment (BA) and pose graph optimization (PGO), respectively. To solve them efficiently, SLAM systems typically use approximate methods that recast them as sequences of linearized optimization problems. If the goal is to find the pose estimate x, then each linear problem minimizes the linearized error function, which is the sum of the current error function and its first-order correction. The first-order correction is the product of the Jacobian, which is the matrix of the function’s first-order derivatives, and the update to the pose estimation. The linear problems are typically solved through factorization, using either Cholesky or QR methods. The solution of each linearized optimization problem is the update for the current pose estimate.

The general procedure is to start with the current approximation of x, compute the error function and the Jacobian, solve a linear optimization problem, and update x accordingly, repeating the process until certain stopping criteria are met. At each iteration, the value of the error function is known as the residual, since it’s the residual error left over from the previous iteration.

General framework.png
General framework for mixed-precision nonlinear optimization.

The most expensive computations in the nonlinear optimizations for both BA and PGO are the computation of the Jacobian (about 15% of the optimization time) and the solution of the linear problem (about 60%). Simply solving either problem at half-precision (fp16) from beginning to end will result in lower accuracy and sometimes numerical instability.

To mitigate these difficulties, we regularize and scale the matrices to avoid overflow and rank deficiency. The rank deficiency occurs when columns of the Jacobian are linearly dependent. Through careful experiments, we further identified the computations to be done at precision higher than fp16 and proposed a mixed-precision nonlinear optimization solver.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

We found that, to match the accuracy of the solution in pure double-precision, the following two components have to be computed in precision higher than fp16:

  • The residual must be evaluated in single or higher precision;
  • The update of x, which is a six-degree position-angle update, must be done in double precision.

Although this general optimization framework applies to both BA and PGO, the details vary across the two applications, because of the different structures and properties of the matrices in the linear problems. We thus propose two mixed-precision solving strategies for the relevant linear systems.

Visual odometry

For visual odometry, people traditionally use filter-based methods, which can suffer from large linearization error. Nonlinear optimization-based methods have become more popular in recent years. These methods estimate the position and orientation of the robot by minimizing an error function, which is the difference between the re-projection of landmarks and their observation in the image frame. This procedure is called bundle adjustment because we are adjusting a bundle of light rays to match the projection with the observation.

fp16 SLAM.png
Bundle adjustment, in which “bundles” of light rays are adjusted to match projection with observation.

BA-based visual odometry operates over a sliding window that contains a fixed number of (key) frames. On average, a new key frame comes at 10Hz. The challenge is to solve the BA problem within a given time budget. One popular way to do this is to solve the normal equation that is the equivalent of the linearized optimization problem; this involves the approximation of the Hessian matrix, or the matrix of second-order derivatives of the residual.

Sparsity pattern.png
Sparsity patterns of Hessian matrices from bundle adjustment (left) and pose graph optimization (right).

The BA problem involves two sets of unknown state variables: one indicates the robot’s pose and the other indicates the landmark location. One way to reduce the computational burden of the BA problem is to marginalize the constraints between camera poses and landmarks and focus on the camera poses first. In the SLAM community, this procedure is known as Schur elimination or landmark marginalization.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

This marginalization step can greatly reduce the size of the linear system that needs to be solved. For a 50-frame BA problem, the Jacobian matrix is usually of the size 5,500 x 1,000, and the Hessian is of size 1,000 x 1,000. Decoupling constraints reduces the size of the linear system to 300 x 300, small enough to be solved with direct or iterative solvers. However, this strategy requires both the formulation of the Hessian matrix and a partial-elimination step, which are expensive to employ in practice.

Our mixed-precision linear solver, which mixes single and half-precision, is based on the conjugate gradient normal-equation residual (CGNR) method, which is an iterative method directly applied to the linear-optimization problem without explicit formulation of the Hessian.

As in the general framework, a naïve casting of all computations to half-precision will result in lower accuracy. In our experiments, we found that if we compute matrix-vector products in half-precision and all other operations in single precision, we will maintain the overall accuracy of the SLAM pipeline.

Solver comparison.png
A comparison of the naïve half-precision solver (left) and the mixed-precision solver (right) on a single trajectory estimation.
Histogram.png
The cumulative-error histogram for 1,703 trajectory estimations where the VO is solved with mixed precision, half-precision, and double precision, respectively.

The matrix-vector products, which are the major computation in CGNR iterations, usually account for 83% of the computing cost, in terms of number of floating-point operations. That means that, if run on NVIDIA V100 GPUs, the mixed-precision solver could save at least 41% solving time compared to the single-precision linear solver.

Loop closure

In the SLAM pipeline, the local pose estimates from VO usually exhibit large drift, especially in the long run. Loop closure corrects this drift.

Loop closure.png
Illustration of loop closure.

For a real-world mapping estimate, without LC correction, the average trajectory error could be at the order of 0.1 meter, which is not acceptable in practice. This error is reduced to 10-4 meters after applying LC corrections.

ATE w/o LC (m)

ATE with LC (m)

Max

4.03E-01

5.83E-04

99%

2.65E-01

5.71E-04

90%

2.00E-01

5.57E-04

Mean

9.72E-02

3.19E-04

The LC adjustment involves solving a global PGO problem. Like the BA problem, it is a nonlinear optimization problem and can be solved within the same mixed-precision framework. But the linear systems arising from PGO problems are much larger and sparser than those of the BA problem.

Related content
“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

As more and more loops are closed, the problem size could grow from several hundreds of poses to several thousands of poses. If we measure the size of a matrix by the number of its rows, during loop closure, the size could grow from the order of 100 to the order of 10,000. Directly solving sparse matrices of this size in double precision is challenging, especially considering the time and computation constraints of on-device applications. For a real-world trajectory estimation, the solving time for the PGO problem could grow up to eight seconds with full CPU usage.

Solving times.png
Time for solving PGO problems during trajectory estimation. The x-axis represents the total number of key frames in each pose graph, and the y-axis represents the time for solving each PGO problem.

This results in a different strategy for designing a mixed-precision solver for PGO problems. Due to the sparsity of the Jacobian matrix, our mixed-precision method is still based on the iterative CGNR method. But to accelerate the convergence of the CGNR iterations, we apply a static incomplete Cholesky preconditioner in each iteration. Cholesky factorization decomposes a symmetric linear system into a product of two triangular matrices, meaning that all of their nonzero values are concentrated on one side of a diagonal across the matrix. This decomposition step is expensive, so we do it only once for the whole problem. The computational cost is mostly dominated by the application of the preconditioner, which involves solving two triangular systems. In our timing analysis, this step consumes around 50% of the computation in each linear solving.

To accelerate the optimization, instead of computing matrix-vector products in half-precision, we solve the triangular system in half-precision, keeping all other operations in single precision. With this mixed-precision solver, we could almost match the accuracy of the full-precision solver while reducing computing time by 26% on average.

ATE histogram
Cumulative ATE histogram for solving 800 PGO problems from a real-world trajectory estimation. Each PGO problem is solved with a mixed-precision solver and a single-precision solver, respectively.

Our results across both the VO and LC applications show that because of the high-efficiency and low-energy nature of half-precision arithmetic, mixed-precision solvers could make on-device SLAM faster and greener.

Acknowledgments

The following contributed equally to this work: Tong Qin, applied scientist, Amazon Hardware; Sankalp Dayal, applied-science manager, Hardware; Joydeep Biswas, software development engineer, Amazon Devices; Varada Gopalakrishnan, vice president and distinguished engineer, Hardware; Adam Fineberg, senior principal engineer, Devices; Rahul Bakshi, senior manager of software, machine learning, and mobility, Hardware.

Research areas

Related content

US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. AGI Autonomy is focused on developing new foundational capabilities for useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. In this role, you will work closely with research teams to design, build, and maintain systems for training and evaluating state-of-the-art agent models. Our team works inside the Amazon AGI SF Lab, an environment designed to empower AI researchers and engineers to work with speed and focus. Our philosophy combines the agility of a startup with the resources of Amazon. Key job responsibilities * Evaluate performance of the training infrastructure, diagnose problems and address any gaps that exist. * Develop reliable infrastructure to schedule training and model evaluation jobs across clusters. * Work closely with researchers to create new techniques, infrastructure, and tooling around emerging research capabilities and evaluating models to meet customer needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software. About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bengaluru
Are you passionate about building data-driven applied science solutions to drive the profitability of the business? Are you excited about solving complex real world problems? Do you have proven analytical capabilities, exceptional communication, project management skills, and the ability to multi-task and thrive in a fast-paced environment? Join us a Senior Applied Scientist to deliver applied science solutions for Amazon Payment Products. Amazon Payment Products team creates and manages a global portfolio of payment products, including co-branded credit cards, instalment financing, etc. Within this team, we are looking for a Senior Applied Scientist who will be responsible for the following: Key job responsibilities As a Senior Applied Scientist, you will be responsible for designing and deploying scalable ML, GenAI, Agentic AI solutions that will impact the payments of millions of customers and solve key customer experience issues. You will develop novel deep learning, LLM for task automation, text processing, pattern recognition, and anomaly detection problems. You will define the research and experiments strategy with an iterative execution approach to develop AI/ML models and progressively improve the results over time. You will partner with business and engineering teams to identify and solve large and significantly complex problems that require scientific innovation. You will help the team leverage your expertise, by coaching and mentoring. You will contribute to the professional development of colleagues, improving their technical knowledge and the engineering practices. You will independently as well as guide team to file for patents and/or publish research work where opportunities arise. As the Payment Products organization deals with problems that are directly related to payments of customers, the Senior Applied Scientist role will impact the large product strategy, identify new business opportunities and provides strategic direction, which will be very exciting.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design and implement a modern, fast, and ergonomic development environment for AI researchers, eliminating current pain points in build times, testing workflows, and iteration speed * Build and manage CI/CD pipelines (CodePipeline, Jenkins, etc.) that support large-scale AI research workflows, including pipelines capable of orchestrating thousands of simultaneous agentic experiments * Develop tooling that bridges local development environments with remote supercomputing resources, enabling researchers to seamlessly leverage massive compute from their IDEs * Manage and optimize code repository infrastructure (GitLab, Phabricator, or similar) to support collaborative research at scale * Implement release management processes and automation to ensure reliable, repeatable deployments of research code and models * Optimize container build systems for GPU workloads, ensuring fast iteration cycles and efficient resource utilization * Work directly with researchers to understand workflow pain points and translate them into infrastructure improvements * Build monitoring and observability into development tooling to identify bottlenecks and continuously improve developer experience * Design and maintain build systems optimized for ML frameworks, CUDA code, and distributed training workloads About the team The team is shaping developer experience from the ground up. Building tools that enable researchers to move at the speed of thought: IDEs that seamlessly shell out to supercomputers, CI/CD pipelines that orchestrate thousands of agentic commands simultaneously, and build systems optimized for GPU-accelerated workflows. Your infrastructure will be the foundation that enables the next generation of AI research, directly contributing to our mission of building the most capable agents in the world.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design, build, and maintain the compute platform that powers all AI research at the SF AI Lab, managing large-scale GPU pools and ensuring optimal resource utilization * Partner directly with research scientists to understand experimental requirements and develop infrastructure solutions that accelerate research velocity * Implement and maintain robust security controls and hardening measures while enabling researcher productivity and flexibility * Modernize and scale existing infrastructure by converting manual deployments into reproducible Infrastructure as Code using AWS CDK * Optimize system performance across multiple GPU architectures, becoming an expert in extracting maximum computational efficiency * Design and implement monitoring, orchestration, and automation solutions for GPU workloads at scale * Ensure infrastructure is compliant with Amazon security standards while creatively solving for research-specific requirements * Collaborate with AWS teams to leverage and influence cloud services that support AI workloads * Build distributed systems infrastructure, including Kubernetes-based orchestration, to support multi-tenant research environments * Serve as the bridge between traditional systems engineering and ML infrastructure, bringing enterprise-grade reliability to research computing About the team This role is part of the foundational infrastructure team at the SF AI Lab, responsible for the platform that enables all research across the organization. Our team serves as the critical link between Amazon's enterprise infrastructure and the Lab's research needs. We are experts in performance optimization, systems architecture, and creative problem-solving—finding ways to push the boundaries of what's possible while maintaining security and reliability standards. We work closely with research scientists, understanding their experimental needs and translating them into robust, scalable infrastructure solutions. Our team has deep expertise in ML framework internals and GPU optimization, but we're also pragmatic systems engineers who build traditional infrastructure with enterprise-grade quality. We value engineers who can balance research velocity with operational excellence, who bring curiosity about ML while maintaining strong fundamentals in systems engineering. This is a small, high-impact team where your work directly enables breakthrough AI research. You'll have the opportunity to work with some of the most advanced AI infrastructure in the world while building the skills that define the future of ML systems engineering.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches. - Recruit Scientists to the team and provide mentorship.