Making deep learning practical for Earth system forecasting

Novel “cuboid attention” helps transformers handle large-scale multidimensional data, while diffusion models enable probabilistic prediction.

The Earth is a complex system. Variabilities ranging from regular events like temperature fluctuations to extreme events like drought, hailstorms, and the El Niño–Southern Oscillation (ENSO) phenomenon can influence crop yields, delay airline flights, and cause floods and forest fires. Precise and timely forecasting of these variabilities can help people take necessary precautions to avoid crises or better utilize natural resources such as wind and solar energy.

The success of transformer-based models in other AI domains has led researchers to attempt applying them to Earth system forecasting, too. But these efforts have encountered several major challenges. Foremost among these is the high dimensionality of Earth system data: naively applying the transformer’s quadratic-complexity attention mechanism is too computationally expensive.

Most existing machine-learning-based Earth systems models also output single, point forecasts, which are often averages across wide ranges of possible outcomes. Sometimes, however, it may be more important to know that there’s a 10% chance of an extreme weather event than to know the general averages across a range of possible outcomes. And finally, typical machine learning models don’t have guardrails imposed by physical laws or historical precedents and can produce outputs that are unlikely or even impossible.

In recent work, our team at Amazon Web Services has tackled all these challenges. Our paper “Earthformer: Exploring space-time transformers for Earth system forecasting”, published at NeurIPS 2022, suggests a novel attention mechanism we call cuboid attention, which enables transformers to process large-scale, multidimensional data much more efficiently.

And in “PreDiff: Precipitation nowcasting with latent diffusion models”, to appear at NeurIPS 2023, we show that diffusion models can both enable probabilistic forecasts and impose constraints on model outputs, making them much more consistent with both the historical record and the laws of physics.

Earthformer and cuboid attention

The heart of the transformer model is its “attention mechanism”, which enables it to weigh the importance of different parts of an input sequence when processing each element of the output sequence. This mechanism allows transformers to capture spatiotemporally long-range dependencies and relationships in the data, which have not been well modeled by conventional convolutional-neural-network- or recurrent-neural-network-based architectures.

Earth system data, however, is inherently high-dimensional and spatiotemporally complex. In the SEVIR dataset studied in our NeurIPS 2022 paper, for instance, each data sequence consists of 25 frames of data captured at five-minute intervals, each frame having a spatial resolution of 384 x 384 pixels. Using the conventional transformer attention mechanism to process such high-dimensional data would be extremely expensive.

In our NeurIPS 2022 paper, we proposed a novel attention mechanism we call cuboid attention, which decomposes input tensors into cuboids, or higher-dimensional analogues of cubes, and applies attention at the level of each cuboid. Since the computational cost of attention scales quadratically with the tensor size, applying attention locally in each cuboid is much more computationally tractable than trying to compute attention weights across the entire tensor at once. For instance, decomposing along the temporal axis can result in cost reduction by a factor of 3842 for the SEVIR dataset, since each frame has a spatial resolution of 384 x 384 pixels

Of course, such decomposition introduces a limitation: attention functions independently within each cuboid, with no communication between cuboids. To address this issue, we also compute global vectors that summarize the cuboids’ attention weights. Other cuboids can factor the global vectors into their own attention weight computations.

cuboid_illustration.gif
Cuboid attention layer processing an input tensor (X) with global vectors (G).

We call our transformer-based model with cuboid attention Earthformer. Earthformer adopts a hierarchical encoder-decoder architecture, which gradually encodes the input sequence to multiple levels of representations and generates the prediction via a coarse-to-fine procedure. Each hierarchy includes a stack of cuboid attention blocks. By stacking multiple cuboid attention layers with different configurations, we are able to efficiently explore effective space-time attention.

earthforer_enc_dec.png
The Earthformer architecture is a hierarchical transformer encoder-decoder with cuboid attention. In this diagram, “×D” means to stack D cuboid attention blocks with residual connections, while “×M” means to have M layers of hierarchies.

We experimented with multiple methods for decomposing an input tensor into cuboids. Our empirical studies show that the “axial” pattern, which stacks three unshifted local decompositions along the temporal, height, and width axes, is both effective and efficient. It achieves the best performance while avoiding the exponential computational cost of vanilla attention.

cub_pattern_together.png
Illustration of cuboid decomposition strategies when the input shape is (T, H, W) = (6, 4, 4), and cuboid size is (3, 2, 2). Elements that have the same color belong to the same cuboid and will attend to each other. Local decompositions aggregate contiguous elements of the tensor, and dilated decompositions aggregate elements according to a step function determined by the cuboid size. Both local and dilated decompositions, however, can be shifted by some number of elements along any of the tensor’s axes.

Experimental results

To evaluate Earthformer, we compared it to six state-of-the-art spatiotemporal forecasting models on two real-world datasets: SEVIR, for the task of continuously predicting precipitation probability in the near future (“nowcasting”), and ICAR-ENSO, for forecasting sea surface temperature (SST) anomalies.

On SEVIR, the evaluation metrics we used were standard mean squared error (MSE) and critical success index (CSI), a standard metric in precipitation nowcasting evaluation. CSI is also known as intersection over union (IoU): at different thresholds, it's denoted as CSI-thresh; their mean is denoted as CSI-M.

On both MSE and CSI, Earthformer outperformed all six baseline models across the board. Earthformer with global vectors also uniformly outperformed the version without global vectors.

Model

#Params.(M)

GFLOPS

Metrics

CSI-M↑

CSI-219↑

CSI-181↑

MSE(10-3)↓

Persistence

-

-

0.2613

0.0526

0.0969

11.5338

UNet

16.6

33

0.3593

0.0577

0.1580

4.1119

ConvLSTM

14.0

527

0.4185

0.1288

0.2482

3.7532

PredRNN

46.6

328

0.4080

0.1312

0.2324

3.9014

PhyDNet

13.7

701

0.3940

0.1288

0.2309

4.8165

E3D-LSTM

35.6

523

0.4038

0.1239

0.2270

4.1702

Rainformer

184.0

170

0.3661

0.0831

0.1670

4.0272

Earthformer w/o global

13.1

257

0.4356

0.1572

0.2716

3.7002

Earthformer

15.1

257

0.4419

0.1791

0.2848

3.6957

On ICAR-ENSO, we report the correlation skill of the three-month-moving-averaged Nino3.4 index, which evaluates the accuracy of SST anomaly prediction across a certain area (170°-120°W, 5°S-5°N) of the Pacific. Earthformer consistently outperforms the baselines in all concerned evaluation metrics, and the version using global vectors further improves performance.

Model

#Params.(M)

GFLOPS

Metrics

C-Nino3.4-M↑

C-Nino3.4-WM↑

MSE(10-4)↓

Persistence

-

-

0.3221

0. 447

4.581

UNet

12.1

0.4

0.6926

2.102

2.868

ConvLSTM

14.0

11.1

0.6955

2.107

2.657

PredRNN

23.8

85.8

0.6492

1.910

3.044

PhyDNet

3.1

5.7

0.6646

1.965

2.708

E3D-LSTM

12.9

99.8

0.7040

2.125

3.095

Rainformer

19.2

1.3

0.7106

2.153

3.043

Earthformer w/o global

6.6

23.6

0.7239

2.214

2.550

Earthformer

7.6

23.9

0.7329

2.259

2.546

PreDiff

Diffusion models have recently emerged as a leading approach to many AI tasks. Diffusion models are generative models that establish a forward process of iteratively adding Gaussian noise to training samples; the model then learns to incrementally remove the added noise in a reverse diffusion process, gradually reducing the noise level and ultimately resulting in clear and high-quality generation.

During training, the model learns a sequence of transition probabilities between each of the denoising steps it incrementally learns to perform. It is therefore an intrinsically probabilistic model, which is well suited for probabilistic forecasting.

A recent variation on diffusion models is the latent diffusion model: before passing to the diffusion model, an input is first fed to an autoencoder, which has a bottleneck layer that produces a compressed embedding (data representation); the diffusion model is then applied in the compressed space.

In our forthcoming NeurIPS paper, “PreDiff: Precipitation nowcasting with latent diffusion models”, we present PreDiff, a latent diffusion model that uses Earthformer as its core neural-network architecture.

By modifying the transition probabilities of the trained model, we can impose constraints on the model output, making it more likely to conform to some prior knowledge. We achieve this by simply shifting the mean of the learned distribution, until it complies better with the constraint we wish to impose. 

prediff_overview_new_v1.png
An overview of PreDiff. The autoencoder (e) encodes the input as a latent vector (zcond). The latent diffusion model, which adopts the Earthformer architecture, then incrementally denoises (steps zt+1 to z0) the noisy version of the input (zT). In the knowledge control step, the transition distributions between denoising steps are modified to accord with prior knowledge.

Results

We evaluated PreDiff on the task of predicting precipitation intensity in the near future (“nowcasting”) on SEVIR. We use anticipated precipitation intensity as a knowledge control to simulate possible extreme weather events like rainstorms and droughts.

We found that knowledge control with anticipated future precipitation intensity effectively guides generation while maintaining fidelity and adherence to the true data distribution. For example, the third row of the following figure simulates how weather unfolds in an extreme case (with probability around 0.35%) where the future average intensity exceeds μτ + 4στ. Such simulation can be valuable for estimating potential damage in extreme-rainstorm cases.

nbody_vis_v6.png
A set of example forecasts from PreDiff with knowledge control (PreDiff-KC), i.e., PreDiff under the guidance of anticipated average intensity. From top to bottom: context sequence y, target sequence x, and forecasts from PreDiff-KC showcasing different levels of anticipated future intensity τ + nστ), where n takes the values −4, −2, 0, 2, and 4.

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team