Making deep learning practical for Earth system forecasting

Novel “cuboid attention” helps transformers handle large-scale multidimensional data, while diffusion models enable probabilistic prediction.

The Earth is a complex system. Variabilities ranging from regular events like temperature fluctuations to extreme events like drought, hailstorms, and the El Niño–Southern Oscillation (ENSO) phenomenon can influence crop yields, delay airline flights, and cause floods and forest fires. Precise and timely forecasting of these variabilities can help people take necessary precautions to avoid crises or better utilize natural resources such as wind and solar energy.

The success of transformer-based models in other AI domains has led researchers to attempt applying them to Earth system forecasting, too. But these efforts have encountered several major challenges. Foremost among these is the high dimensionality of Earth system data: naively applying the transformer’s quadratic-complexity attention mechanism is too computationally expensive.

Most existing machine-learning-based Earth systems models also output single, point forecasts, which are often averages across wide ranges of possible outcomes. Sometimes, however, it may be more important to know that there’s a 10% chance of an extreme weather event than to know the general averages across a range of possible outcomes. And finally, typical machine learning models don’t have guardrails imposed by physical laws or historical precedents and can produce outputs that are unlikely or even impossible.

In recent work, our team at Amazon Web Services has tackled all these challenges. Our paper “Earthformer: Exploring space-time transformers for Earth system forecasting”, published at NeurIPS 2022, suggests a novel attention mechanism we call cuboid attention, which enables transformers to process large-scale, multidimensional data much more efficiently.

And in “PreDiff: Precipitation nowcasting with latent diffusion models”, to appear at NeurIPS 2023, we show that diffusion models can both enable probabilistic forecasts and impose constraints on model outputs, making them much more consistent with both the historical record and the laws of physics.

Earthformer and cuboid attention

The heart of the transformer model is its “attention mechanism”, which enables it to weigh the importance of different parts of an input sequence when processing each element of the output sequence. This mechanism allows transformers to capture spatiotemporally long-range dependencies and relationships in the data, which have not been well modeled by conventional convolutional-neural-network- or recurrent-neural-network-based architectures.

Earth system data, however, is inherently high-dimensional and spatiotemporally complex. In the SEVIR dataset studied in our NeurIPS 2022 paper, for instance, each data sequence consists of 25 frames of data captured at five-minute intervals, each frame having a spatial resolution of 384 x 384 pixels. Using the conventional transformer attention mechanism to process such high-dimensional data would be extremely expensive.

In our NeurIPS 2022 paper, we proposed a novel attention mechanism we call cuboid attention, which decomposes input tensors into cuboids, or higher-dimensional analogues of cubes, and applies attention at the level of each cuboid. Since the computational cost of attention scales quadratically with the tensor size, applying attention locally in each cuboid is much more computationally tractable than trying to compute attention weights across the entire tensor at once. For instance, decomposing along the temporal axis can result in cost reduction by a factor of 3842 for the SEVIR dataset, since each frame has a spatial resolution of 384 x 384 pixels

Of course, such decomposition introduces a limitation: attention functions independently within each cuboid, with no communication between cuboids. To address this issue, we also compute global vectors that summarize the cuboids’ attention weights. Other cuboids can factor the global vectors into their own attention weight computations.

cuboid_illustration.gif
Cuboid attention layer processing an input tensor (X) with global vectors (G).

We call our transformer-based model with cuboid attention Earthformer. Earthformer adopts a hierarchical encoder-decoder architecture, which gradually encodes the input sequence to multiple levels of representations and generates the prediction via a coarse-to-fine procedure. Each hierarchy includes a stack of cuboid attention blocks. By stacking multiple cuboid attention layers with different configurations, we are able to efficiently explore effective space-time attention.

earthforer_enc_dec.png
The Earthformer architecture is a hierarchical transformer encoder-decoder with cuboid attention. In this diagram, “×D” means to stack D cuboid attention blocks with residual connections, while “×M” means to have M layers of hierarchies.

We experimented with multiple methods for decomposing an input tensor into cuboids. Our empirical studies show that the “axial” pattern, which stacks three unshifted local decompositions along the temporal, height, and width axes, is both effective and efficient. It achieves the best performance while avoiding the exponential computational cost of vanilla attention.

cub_pattern_together.png
Illustration of cuboid decomposition strategies when the input shape is (T, H, W) = (6, 4, 4), and cuboid size is (3, 2, 2). Elements that have the same color belong to the same cuboid and will attend to each other. Local decompositions aggregate contiguous elements of the tensor, and dilated decompositions aggregate elements according to a step function determined by the cuboid size. Both local and dilated decompositions, however, can be shifted by some number of elements along any of the tensor’s axes.

Experimental results

To evaluate Earthformer, we compared it to six state-of-the-art spatiotemporal forecasting models on two real-world datasets: SEVIR, for the task of continuously predicting precipitation probability in the near future (“nowcasting”), and ICAR-ENSO, for forecasting sea surface temperature (SST) anomalies.

On SEVIR, the evaluation metrics we used were standard mean squared error (MSE) and critical success index (CSI), a standard metric in precipitation nowcasting evaluation. CSI is also known as intersection over union (IoU): at different thresholds, it's denoted as CSI-thresh; their mean is denoted as CSI-M.

On both MSE and CSI, Earthformer outperformed all six baseline models across the board. Earthformer with global vectors also uniformly outperformed the version without global vectors.

Model

#Params.(M)

GFLOPS

Metrics

CSI-M↑

CSI-219↑

CSI-181↑

MSE(10-3)↓

Persistence

-

-

0.2613

0.0526

0.0969

11.5338

UNet

16.6

33

0.3593

0.0577

0.1580

4.1119

ConvLSTM

14.0

527

0.4185

0.1288

0.2482

3.7532

PredRNN

46.6

328

0.4080

0.1312

0.2324

3.9014

PhyDNet

13.7

701

0.3940

0.1288

0.2309

4.8165

E3D-LSTM

35.6

523

0.4038

0.1239

0.2270

4.1702

Rainformer

184.0

170

0.3661

0.0831

0.1670

4.0272

Earthformer w/o global

13.1

257

0.4356

0.1572

0.2716

3.7002

Earthformer

15.1

257

0.4419

0.1791

0.2848

3.6957

On ICAR-ENSO, we report the correlation skill of the three-month-moving-averaged Nino3.4 index, which evaluates the accuracy of SST anomaly prediction across a certain area (170°-120°W, 5°S-5°N) of the Pacific. Earthformer consistently outperforms the baselines in all concerned evaluation metrics, and the version using global vectors further improves performance.

Model

#Params.(M)

GFLOPS

Metrics

C-Nino3.4-M↑

C-Nino3.4-WM↑

MSE(10-4)↓

Persistence

-

-

0.3221

0. 447

4.581

UNet

12.1

0.4

0.6926

2.102

2.868

ConvLSTM

14.0

11.1

0.6955

2.107

2.657

PredRNN

23.8

85.8

0.6492

1.910

3.044

PhyDNet

3.1

5.7

0.6646

1.965

2.708

E3D-LSTM

12.9

99.8

0.7040

2.125

3.095

Rainformer

19.2

1.3

0.7106

2.153

3.043

Earthformer w/o global

6.6

23.6

0.7239

2.214

2.550

Earthformer

7.6

23.9

0.7329

2.259

2.546

PreDiff

Diffusion models have recently emerged as a leading approach to many AI tasks. Diffusion models are generative models that establish a forward process of iteratively adding Gaussian noise to training samples; the model then learns to incrementally remove the added noise in a reverse diffusion process, gradually reducing the noise level and ultimately resulting in clear and high-quality generation.

During training, the model learns a sequence of transition probabilities between each of the denoising steps it incrementally learns to perform. It is therefore an intrinsically probabilistic model, which is well suited for probabilistic forecasting.

A recent variation on diffusion models is the latent diffusion model: before passing to the diffusion model, an input is first fed to an autoencoder, which has a bottleneck layer that produces a compressed embedding (data representation); the diffusion model is then applied in the compressed space.

In our forthcoming NeurIPS paper, “PreDiff: Precipitation nowcasting with latent diffusion models”, we present PreDiff, a latent diffusion model that uses Earthformer as its core neural-network architecture.

By modifying the transition probabilities of the trained model, we can impose constraints on the model output, making it more likely to conform to some prior knowledge. We achieve this by simply shifting the mean of the learned distribution, until it complies better with the constraint we wish to impose. 

prediff_overview_new_v1.png
An overview of PreDiff. The autoencoder (e) encodes the input as a latent vector (zcond). The latent diffusion model, which adopts the Earthformer architecture, then incrementally denoises (steps zt+1 to z0) the noisy version of the input (zT). In the knowledge control step, the transition distributions between denoising steps are modified to accord with prior knowledge.

Results

We evaluated PreDiff on the task of predicting precipitation intensity in the near future (“nowcasting”) on SEVIR. We use anticipated precipitation intensity as a knowledge control to simulate possible extreme weather events like rainstorms and droughts.

We found that knowledge control with anticipated future precipitation intensity effectively guides generation while maintaining fidelity and adherence to the true data distribution. For example, the third row of the following figure simulates how weather unfolds in an extreme case (with probability around 0.35%) where the future average intensity exceeds μτ + 4στ. Such simulation can be valuable for estimating potential damage in extreme-rainstorm cases.

nbody_vis_v6.png
A set of example forecasts from PreDiff with knowledge control (PreDiff-KC), i.e., PreDiff under the guidance of anticipated average intensity. From top to bottom: context sequence y, target sequence x, and forecasts from PreDiff-KC showcasing different levels of anticipated future intensity τ + nστ), where n takes the values −4, −2, 0, 2, and 4.

Related content

US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Conversational Ad Experiences team within Sponsored Products and Brands is a cross-functional team focusing on designing, developing and launching innovative ad experiences in conversational contexts. We utilize leading-edge engineering and science technologies in generative AI to help shoppers discover new products and brands through intuitive, conversational, multi-turn interfaces. We also empower advertisers to reach shoppers, using their own voice to explain and demonstrate how their products meet shoppers' needs. We collaborate with various teams across multiple Amazon organizations to push the boundary of what's possible in these fields. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! As an Applied Scientist II in the Conversational Ad Experiences team, you'll be working with scientists, engineers, and product managers to innovate on behalf of our customers. An ideal candidate is able to navigate through ambiguous requirements, working with various partner teams, and has experience in generative AI, large language models (LLMs), information retrieval, and recommendation systems. Using a combination of generative AI and online experimentation, our scientists develop insights and optimizations that enable the monetization of Amazon properties while enhancing the experience of hundreds of millions of Amazon shoppers worldwide. Key job responsibilities - Drive end-to-end generative AI projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis of data sets to identify insights and build models that enhance traffic monetization, merchandise sales, and the overall shopper experience. - Train generative AI and machine learning models, run proof-of-concept experiments, optimize, and deploy models at scale in production - Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production. - Research new and innovative generative AI and machine learning approaches. - Work closely with product managers to contribute to our mission, and proactively identify science opportunities to drive business. - Be a member of the Amazon-wide machine learning community, participating in internal and external meetups, hackathons and conferences.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians on a mission to develop a fault-tolerant quantum computer. You will be joining a team located in Pasadena, CA that conducts materials research to improve the performance of superconducting quantum processors. We seek a Quantum Research Scientist to investigate how material defects affect qubit performance. In this role, you will combine expertise in numerical simulations and materials characterization to study materials loss mechanisms such as two-level systems, quasiparticles, vortices, etc. Key job responsibilities Provide subject matter expertise on integrated experimental and computational studies of materials defects Develop and use computational tools for large-scale simulations of disordered structures Develop and implement multi-technique materials characterization workflows for thin films and devices, with a focus on the surfaces and interfaces Identify material properties that can be a reliable proxy for the performance of superconducting resonators and qubits Communicate findings to teammates, the broader CQC team and, when appropriate, publish findings in scientific journals A day in the life At the AWS CQC, we understand that developing quantum computing technology is a marathon, not a sprint. The work/life integration within our team encourages a culture where employees work hard and also have ownership over their downtime. We are committed to the growth and development of every employee at the AWS CQC, and that includes our research scientists. You will receive management and mentorship from within the team that is geared toward career growth, and also have the opportunity to participate in Amazon's mentorship programs for scientists and engineers. Working closely with other quantum research scientists in other disciplines – like design, measurement and cryogenic hardware – will provide opportunities to dive deep into an education on quantum computing. About the team Our team contributes to the fabrication of processors and other hardware that enable quantum computing technologies. Doing that necessitates the development of materials with tailored properties for superconducting circuits. Research Scientists and Engineers on the Materials team operate deposition and characterization systems in order to develop and optimize thin film processes for use in these devices. They work alongside other Research Scientists and Engineers to help deliver the fabricated devices for quantum computing experiments. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, MA, North Reading
Amazon Newco is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine frontier AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This role will lead the development of physics-based simulation infrastructure critical to accelerating our development of complex robotic systems operating in real-world conditions. The ideal candidate will bridge deep theoretical physics understanding with practical engineering implementation to enable rapid iteration and validation of robot designs before physical prototyping. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Key job responsibilities - Architect and lead the development of comprehensive simulation environments supporting multi-modal robotics development. - Drive simulation-based design optimization across mechanical, electrical, and control systems. - Lead validation of simulation results against physical systems. - Collaborate with hardware, software, and AI teams to accelerate development cycles. - Build and lead a world-class simulation team. - Partner with safety certification teams to validate complex interaction scenarios. A day in the life Lead the development and implementation of advanced physics-based simulation capabilities supporting Amazon's most ambitious robotics program to date. The ideal candidate will bridge theoretical physics understanding with practical engineering implementation, leading a team that enables rapid iteration and validation of complex robotic systems.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities What will you do? - Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms - Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques - Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine - Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics - Train custom Gen AI models that beat SOTA and paves path for developing production models - Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices - Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.