Mitigating social bias in knowledge graph embeddings

Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

Question-answering systems frequently rely on knowledge graphs, large collections of facts about real-world entities (people, organizations, countries, etc.). To make use of the information in knowledge graphs, machine learning models often employ knowledge graph embeddings, vector representations of the entities in the graphs. 

A potential problem with this approach is that the distributions of data in knowledge graphs reflect current and historical social biases. For instance, most knowledge graphs include more male entities than female with the profession “banker”, or more “white American” entities than “African-American” entities with the profession “ballet dancer”. 

If knowledge graph embeddings end up encoding these biases, so will the question-answering systems that use them. If a little girl talking to a chatbot asks, “What should I be when I grow up?”, a biased embedding might rule out possible answers that are predominantly associated with men in the knowledge graph. For some professions — “baritone”, for instance — that may be fine. But in other cases, the biases may be relics of a less egalitarian past.

A two-dimensional representation of our method for measuring bias in knowledge graph embeddings.
A two-dimensional representation of our method for measuring bias in knowledge graph embeddings. In each diagram, the blue dots labeled person1 indicate the shift in an embedding as we tune its parameters. The orange arrows represent relation vectors and the orange dots the resulting sums. As we shift the gender relation toward maleness, the profession relation shifts away from nurse and closer to doctor.
Credit: Glynis Condon

Earlier this year, at the AKBC Workshop on Bias in Knowledge Graphs, we presented a paper that examines this problem. Using a standard embedding technique, we looked for correlations between the professions of people listed in Wikidata and demographic factors, such as gender, ethnicity, and religion, to see whether the embeddings do indeed encode harmful social biases. 

Following on from this, at last week’s Conference on Empirical Methods in Natural Language Processing (EMNLP), we presented “Debiasing knowledge graph embeddings”, in which we attempt to address this problem by developing a lightweight alteration to the standard method of training graph embeddings that reduces bias. 

As knowledge graph embeddings become more widely used within the machine learning community, we hope this work raises awareness of the biases they may encode and moves us closer to the goal of effective debiasing.

Knowledge graph embedding

Knowledge graph consisting of a left entity, a relation, and a right entity.
Knowledge graphs generally store facts as triples consisting of a left entity, a relation, and a right entity.
Credit: Joseph Fisher

A standard knowledge graph represents data using triples, each of which consists of two entities and the relationship between them: for instance, the entities emmanuelle_charpentier and germany are related by the relation lives_in.

Knowledge graph embeddings represent the entities in a knowledge graph as points in a multidimensional space. The idea is that spatial relationships between the points encode the relationships captured by the graph. 

With the common embedding framework TransE, for instance, adding the vector representing the relationship lives_in to the point representing emmanuelle_charpentier should bring us close to the location of the point representing germany. 

During training, the embedding model learns to maximize the accuracy of these spatial relationships across all the triples captured in the knowledge graph. Among other applications, embeddings can be used for link prediction, or inferring relationships between entities that do not yet feature in the graph.

Do trained knowledge graph embeddings encode social biases?

To see why knowledge graph embeddings might encode social biases, let’s look at the counts of male and female entities in Wikidata, the most extensive open-source knowledge graph.

Counts of male and female entities in Wikidata
Counts of male and female entities in Wikidata
Credit: Joseph Fisher

There are more than four times as many male entities in Wikidata as there are female, a reflection of long-persisting social biases in the real world. 

In our paper “Measuring social bias in knowledge graph embeddings”, we determine whether such differences in counts become encoded in embeddings. To do this, we take the embedding of a human entity and tune it so that the addition of a relation vector — such has has_religion or has_gender — edges closer to the embedding for some particular right-hand attribute — such as “Catholic” or “female”.

List of top 20 'most female' professions in Wikidata according to TransE embeddings. 
The top 20 “most female” professions in Wikidata according to TransE embeddings. B_p denotes the bias score, C_fem the counts of female entities in the knowledge graph with these professions, and C_male the counts of male entities with these professions.
From “Measuring social bias in knowledge graph embeddings”

As we tune the embedding, we observe how the result of adding the has_profession vector changes. That is, for each potential profession, we determine whether the model assigns it to the person with greater or lesser probability as the embedding changes. 

Running this calculation across all humans and professions, we are able to identify the professions that the embeddings encode as the “most male” and the “most female”. The table at right shows the top 20 “most female” professions according to our measure. (The number of entities in Wikipedia with non-binary genders is comparatively negligible; although this represents another bias in the data, it also means that the resulting embeddings would be too noisy to yield meaningful results in our study.)

List of the top 20 'most male' professions in Wikidata according to TransE embeddings.
Top 20 "most male" professions in Wikidata according to TransE embeddings.
From “Measuring social bias in knowledge graph embeddings”

The differences in the counts of entities in the knowledge graph with these professions appear to translate to biases in the embeddings. There are some professions, such as “homekeeper”, that we would prefer were not associated with a particular gender; others, such as “woman of letters”, may be less controversial. 

We also calculate the top 20 “male” professions, where the conclusions are similar.

Can we adjust the training of knowledge graph embeddings to reduce encoded biases?

In “Debiasing knowledge graph embeddings”, we turn our attention to reducing such biases and their potentially harmful consequences for downstream applications, such as chatbots. To do this, we train the embedding model not only on how faithfully it reconstructs triples but also on how well it approximates even distributions for gender and other sensitive characteristics, such as religion. 

Put another way, we update the embedding of person1 so that it becomes impossible for the model to predict gender. If this is done precisely, it should also break correlations between gender and profession.

Diagram that demonstrates measurement of how well a knowledge graph embedding scheme matches target distributions.
Our debiasing approach uses Kullback-Leibler (KL) divergence to measure how well a knowledge graph embedding scheme matches our target distributions.
Credit: Joseph Fisher

A potential drawback is that this approach prevents the model from using gender, religion, nationality, or ethnicity to predict noncontroversial triples. For instance, we may like the embeddings to reflect that a nun is more likely to be female than male.

To allow this, we introduce attribute embeddings. In cases where we wish to make use of sensitive information, we can simply add these attribute vectors back in to the embeddings.

Attribute vector: the male attribute embedding back into the model for the profession nun but not for the profession doctor.
Here, we add the male attribute embedding back into the model for the profession nun but not for the profession doctor.
Credit: Joseph Fisher

We evaluate our model against a Basic TransE model with no debiasing and against the debiasing approach adopted by Bose et al., which uses neural-network filters proposed in the literature previously. We measure the usefulness of the embeddings for link prediction (according to mean reciprocal rank, or MRR), their bias, and training time.

During training, embeddings are scored on their accuracy — the degree to which they reproduce the corresponding triples in the knowledge graph. We measure bias as the difference between those scores for entities that fall into one category or another — religion, gender, and so on. We find that our model incurs a slight (roughly 3%) dropoff in link prediction accuracy in exchange for a dramatic reduction in bias.

MRR

Gender bias

Seconds per epoch

Basic

0.68

2.79

68.4

Bose et al.

0.426

2.75

533.3

Ours

0.66

0.19

89.4

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
Are you fascinated by the power of Large Language Models (LLM) and applying Generative AI to solve complex challenges within one of Amazon's most significant businesses? Amazon Selection and Catalog Systems (ASCS) builds the systems that host and run the world's largest e-Commerce products catalog, it powers the online buying experience for customers worldwide so they can find, discover and buy anything they want. Amazon's customers rely on the completeness, consistency and correctness of Amazon's product data to make well-informed purchase decisions. We develop LLM applications that make Catalog the best-in-class source of product information for all products worldwide. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries) and multitude of input sources (millions of sellers contributing product data with different quality). We are seeking a passionate, talented, and inventive individual to join the Catalog AI team and help build industry-leading technologies that customers will love. You will apply machine learning and large language model techniques, such as fine-tuning, reinforcement learning, and prompt optimization, to solve real customer problems. You will work closely with scientists and engineers to experiment with new methods, run large-scale evaluations, and bring research ideas into production. Key job responsibilities * Design and implement LLM-based solutions to improve catalog data quality and completeness * Conduct experiments and A/B tests to validate model improvements and measure business impact * Optimize large language models for quality and cost on catalog-specific tasks * Collaborate with engineering teams to deploy models at scale serving billions of products