More reliable nearest-neighbor search with deep metric learning

Novel loss term that can be added to any loss function regularizes interclass and intraclass distances.

Many machine learning (ML) applications involve embedding data in a representation space, where the geometric relationships between embeddings carry semantic content. Performing a useful task often involves retrieving an embedding’s proximate neighbors in the space: for instance, the answer embeddings near a query embedding, the image embeddings near the embedding of a text description, the text embeddings in one language near a text embedding in another, and so on.

A popular way to ensure that retrieved examples accurately represent the intended semantics is deep metric learning, which is commonly used to train contrastive-learning models like the vision-language model CLIP. In deep metric learning, the ML model learns to structure the representation space according to a specified metric, so as to maximize the distinction between dissimilar training samples while promoting proximity among similar ones.

One drawback of deep metric learning (DML), however, is that both the distances between embeddings of the same class and the distances between different classes of embeddings can vary. This is a problem in many real-world applications, where you want a single distance threshold that meets specific false-positive and false-negative rate requirements. If both the interclass and intraclass distances vary, no single threshold is optimal in all cases. This can cause substantial deployment complexities in large-scale applications, as individual users may require distinct threshold settings.

Related content
New approach speeds graph-based search by 20% to 60%, regardless of graph construction method.

At this year’s International Conference on Learning Representations (ICLR), my colleagues and I presented a way to make the distances between DML embeddings more consistent, so that a single threshold will yield equitable fractions of relevant results across classes.

First, we propose a new evaluation metric for measuring DML models’ threshold consistency, called the operating-point-inconsistency score (OPIS), which we use to show that optimizing model accuracy does not optimize threshold consistency. Then we propose a new loss term, which can be added to any loss function and backbone architecture for training a DML model, that regularizes distances between both hard-positive intraclass and hard-negative interclass embeddings, to make distance thresholds more consistent. This helps to ensure consistent accuracy across customers, even amid significant variations in their query data.

To test our approach, we used four benchmark image retrieval datasets, and with each one we trained eight networks: four of the networks were residual networks, trained with two different loss functions, each with and without our added term; the other four were vision transformer networks, also trained with two different state-of-the-art DML loss functions, with and without our added term.

In the resulting 16 comparisons, the incorporation of our loss term notably enhanced threshold consistency across all experiments, reducing the OPIS inconsistency score by as much as 77.3%. The integration of our proposed loss also led to improved accuracy in 14 out of the 16 comparisons, with the greatest margin of improvement being 3.6% and the highest margin of diminishment being 0.2%.

Measuring consistency

DML models are typically trained using contrastive learning, in which the model receives pairs of inputs, which are either of the same class or of different classes. During training, the model learns an embedding scheme that pushes data of different classes apart from each other and pulls data of the same class together.

As the separation between classes increases, and the separation within classes decreases, you might expect that the embeddings for each class become highly compact, leading to a high degree of distance consistency across classes. But we show that this is not the case, even for models with very high accuracies.

Our evaluation metric, OPIS, relies on a utility score that measures a model’s accuracy at different threshold values. We use the standard F1 score, which factors in both the false-acceptance and false-rejection rate, where a weighting term can be added to emphasize one rate over the other.

Thousands of overlaid approximately-bell-shaped curves, with wide disparity in width, illustrating the difficulty of choosing a single threshold value optimizes utility for all of them.
Utility (U(d)) vs. threshold distance (d) for the iNaturalist dataset, in which the labeled data classes are animal species.

Then we define a range of threshold values, which we call the calibration range, which is typically based on the target performance metric in some way. For instance, it might be chosen so as to impose bounds on the false-acceptance or false-rejection rate. We then compute the average difference between the utility score for a given threshold choice and the average utility score over the complete range of threshold values. As can be seen in the graph of utility vs. threshold distance, the utility-threshold curve can vary significantly for different classes of data in the same dataset.

To gauge the relationship between performance and threshold consistency, we trained a series of models on the same dataset using a range of different loss functions and batch sizes. We found that, among the lower-accuracy models, there was indeed a correlation between accuracy and threshold consistency. But beyond an inflection point, improved performance came at the cost of less consistent thresholds.

Seven blue circles of different sizes, plotted on a plane whose axes are labeled "Threshold inconsistency (OPIS)" and "Recognition error". The three rightmost (highest-error) circles lie almost on a straight line, from upper right to lower left, which is approximated with a downward-pointing red arrow. The circles to the left of the red arrow, however, show a slight upward trend from right to left — that is, toward greater inconsistency, as the error rate goes down. Connected to four of the circles by dotted lines are four red triangles, representing versions of the same models trained using the TCM loss. In all four cases, the triangles are closer to both the x-axis and the y-axis than the associated circles, indicating lower error and greater consistency in threshold distance.
Threshold consistency vs. recognition error for two different models trained using five different loss functions and varied batch sizes. Circles represent models trained using the basic form of the loss function; triangles represent models trained with our additional loss term. Arrows indicate the correlations between increasing accuracy and threshold consistency.

Better threshold consistency

To improve threshold consistency, we introduce a new regularization loss for DML training, called the threshold-consistent margin (TCM) loss. TCM has two parameters. The first is a positive margin for mining hard positive data pairs, where “hard” denotes data items of the same class with small cosine similarity (i.e., they’re so dissimilar that it is hard to assign them to the same class). The second is a negative margin for mining hard negative data pairs, where “hard” indicates data points of different classes with high cosine similarity (i.e., they’re so similar that it is hard to assign them to different classes).

Related content
New loss functions enable better approximation of the optimal loss and more-useful representations of multimodal data.

After mining these hard pairs, the loss term imposes a penalty that’s proportional to the difference between the measured distance and the parameter for the hard pairs exclusively. Like the calibration range, these values can be designed to enforce bounds on the false-acceptance of false-rejection rates — although, because of distribution drift between training and test sets, we do recommend that they be tuned to the data.

In other words, our TCM loss term serves as a “local inspector" by selectively adjusting hard samples to prevent overseparateness and excessive compactness in the vicinity of the boundaries between classes. As can be seen in the figure below, which compares the utility-threshold curves for a model trained using our loss function to one trained without it, our regularization term improves the consistency of threshold distances across data classes.

The superimposed curves from above, now paired with a second set of curves, whose disparity in width is less pronounced. The first set is labeled as having been produced using the Smooth-AP loss function, the second set as having been produced using Smooth-AP and TCM.
Utility (U(d)) vs. threshold distance (d) for the iNaturalist dataset, before and after the use of our additional loss term (TCM).

Below are the results of our experiments on four benchmark datasets, using two models for each and two versions of two loss functions for each model:

TCM results.png
The results of our experiments. Performance is measured according to recall for the top-scoring results (R@1); we also report change in OPIS and change in 10%-OPIS, meaning the difference in OPIS between the worst-performing 10% of data and the remaining 90%. We report results only for models trained with our loss term; the absolute change in performance relative to models trained without our loss term is recorded in red or green, with arrows indicating direction of change.

We also conducted a toy experiment using the MNIST dataset of hand-drawn digits to visualize the effect of our proposed TCM regularization, where the task was to learn to group examples of the same digit together. The addition of our loss term led to more compact class clusters and clearer separation between clusters, as can be seen in the visualization below:

Two figures consisting of 10 symmetrically spaced arrows of equal length radiating out from a point on a blue field. Each arrow is labeled with one of the digits 0 through 9, and the tip of each arrow is surrounded by a reddish oval. In the image at left, the ovals for the number pairs 4 and 9, 8 and 0, and 2 and 5 blur into each other at their edges. In the image at right, the ovals are more compact, and there are clear boundaries of blue between any two of them.
The results of adding our extra term to the ArcFace loss function during training on the MNIST dataset of hand-drawn digits. The color intensity conveys the probability density distribution of embeddings within each class, with higher density depicted in red.

The addition of our TCM loss term may not lead to dramatic improvements in every instance. But because it can be used, at no added computational cost, with any choice of model and any choice of loss function, the occasions are rare when it wouldn’t be worth trying.

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!