More reliable nearest-neighbor search with deep metric learning

Novel loss term that can be added to any loss function regularizes interclass and intraclass distances.

Many machine learning (ML) applications involve embedding data in a representation space, where the geometric relationships between embeddings carry semantic content. Performing a useful task often involves retrieving an embedding’s proximate neighbors in the space: for instance, the answer embeddings near a query embedding, the image embeddings near the embedding of a text description, the text embeddings in one language near a text embedding in another, and so on.

A popular way to ensure that retrieved examples accurately represent the intended semantics is deep metric learning, which is commonly used to train contrastive-learning models like the vision-language model CLIP. In deep metric learning, the ML model learns to structure the representation space according to a specified metric, so as to maximize the distinction between dissimilar training samples while promoting proximity among similar ones.

One drawback of deep metric learning (DML), however, is that both the distances between embeddings of the same class and the distances between different classes of embeddings can vary. This is a problem in many real-world applications, where you want a single distance threshold that meets specific false-positive and false-negative rate requirements. If both the interclass and intraclass distances vary, no single threshold is optimal in all cases. This can cause substantial deployment complexities in large-scale applications, as individual users may require distinct threshold settings.

Related content
New approach speeds graph-based search by 20% to 60%, regardless of graph construction method.

At this year’s International Conference on Learning Representations (ICLR), my colleagues and I presented a way to make the distances between DML embeddings more consistent, so that a single threshold will yield equitable fractions of relevant results across classes.

First, we propose a new evaluation metric for measuring DML models’ threshold consistency, called the operating-point-inconsistency score (OPIS), which we use to show that optimizing model accuracy does not optimize threshold consistency. Then we propose a new loss term, which can be added to any loss function and backbone architecture for training a DML model, that regularizes distances between both hard-positive intraclass and hard-negative interclass embeddings, to make distance thresholds more consistent. This helps to ensure consistent accuracy across customers, even amid significant variations in their query data.

To test our approach, we used four benchmark image retrieval datasets, and with each one we trained eight networks: four of the networks were residual networks, trained with two different loss functions, each with and without our added term; the other four were vision transformer networks, also trained with two different state-of-the-art DML loss functions, with and without our added term.

In the resulting 16 comparisons, the incorporation of our loss term notably enhanced threshold consistency across all experiments, reducing the OPIS inconsistency score by as much as 77.3%. The integration of our proposed loss also led to improved accuracy in 14 out of the 16 comparisons, with the greatest margin of improvement being 3.6% and the highest margin of diminishment being 0.2%.

Measuring consistency

DML models are typically trained using contrastive learning, in which the model receives pairs of inputs, which are either of the same class or of different classes. During training, the model learns an embedding scheme that pushes data of different classes apart from each other and pulls data of the same class together.

As the separation between classes increases, and the separation within classes decreases, you might expect that the embeddings for each class become highly compact, leading to a high degree of distance consistency across classes. But we show that this is not the case, even for models with very high accuracies.

Our evaluation metric, OPIS, relies on a utility score that measures a model’s accuracy at different threshold values. We use the standard F1 score, which factors in both the false-acceptance and false-rejection rate, where a weighting term can be added to emphasize one rate over the other.

Thousands of overlaid approximately-bell-shaped curves, with wide disparity in width, illustrating the difficulty of choosing a single threshold value optimizes utility for all of them.
Utility (U(d)) vs. threshold distance (d) for the iNaturalist dataset, in which the labeled data classes are animal species.

Then we define a range of threshold values, which we call the calibration range, which is typically based on the target performance metric in some way. For instance, it might be chosen so as to impose bounds on the false-acceptance or false-rejection rate. We then compute the average difference between the utility score for a given threshold choice and the average utility score over the complete range of threshold values. As can be seen in the graph of utility vs. threshold distance, the utility-threshold curve can vary significantly for different classes of data in the same dataset.

To gauge the relationship between performance and threshold consistency, we trained a series of models on the same dataset using a range of different loss functions and batch sizes. We found that, among the lower-accuracy models, there was indeed a correlation between accuracy and threshold consistency. But beyond an inflection point, improved performance came at the cost of less consistent thresholds.

Seven blue circles of different sizes, plotted on a plane whose axes are labeled "Threshold inconsistency (OPIS)" and "Recognition error". The three rightmost (highest-error) circles lie almost on a straight line, from upper right to lower left, which is approximated with a downward-pointing red arrow. The circles to the left of the red arrow, however, show a slight upward trend from right to left — that is, toward greater inconsistency, as the error rate goes down. Connected to four of the circles by dotted lines are four red triangles, representing versions of the same models trained using the TCM loss. In all four cases, the triangles are closer to both the x-axis and the y-axis than the associated circles, indicating lower error and greater consistency in threshold distance.
Threshold consistency vs. recognition error for two different models trained using five different loss functions and varied batch sizes. Circles represent models trained using the basic form of the loss function; triangles represent models trained with our additional loss term. Arrows indicate the correlations between increasing accuracy and threshold consistency.

Better threshold consistency

To improve threshold consistency, we introduce a new regularization loss for DML training, called the threshold-consistent margin (TCM) loss. TCM has two parameters. The first is a positive margin for mining hard positive data pairs, where “hard” denotes data items of the same class with small cosine similarity (i.e., they’re so dissimilar that it is hard to assign them to the same class). The second is a negative margin for mining hard negative data pairs, where “hard” indicates data points of different classes with high cosine similarity (i.e., they’re so similar that it is hard to assign them to different classes).

Related content
New loss functions enable better approximation of the optimal loss and more-useful representations of multimodal data.

After mining these hard pairs, the loss term imposes a penalty that’s proportional to the difference between the measured distance and the parameter for the hard pairs exclusively. Like the calibration range, these values can be designed to enforce bounds on the false-acceptance of false-rejection rates — although, because of distribution drift between training and test sets, we do recommend that they be tuned to the data.

In other words, our TCM loss term serves as a “local inspector" by selectively adjusting hard samples to prevent overseparateness and excessive compactness in the vicinity of the boundaries between classes. As can be seen in the figure below, which compares the utility-threshold curves for a model trained using our loss function to one trained without it, our regularization term improves the consistency of threshold distances across data classes.

The superimposed curves from above, now paired with a second set of curves, whose disparity in width is less pronounced. The first set is labeled as having been produced using the Smooth-AP loss function, the second set as having been produced using Smooth-AP and TCM.
Utility (U(d)) vs. threshold distance (d) for the iNaturalist dataset, before and after the use of our additional loss term (TCM).

Below are the results of our experiments on four benchmark datasets, using two models for each and two versions of two loss functions for each model:

TCM results.png
The results of our experiments. Performance is measured according to recall for the top-scoring results (R@1); we also report change in OPIS and change in 10%-OPIS, meaning the difference in OPIS between the worst-performing 10% of data and the remaining 90%. We report results only for models trained with our loss term; the absolute change in performance relative to models trained without our loss term is recorded in red or green, with arrows indicating direction of change.

We also conducted a toy experiment using the MNIST dataset of hand-drawn digits to visualize the effect of our proposed TCM regularization, where the task was to learn to group examples of the same digit together. The addition of our loss term led to more compact class clusters and clearer separation between clusters, as can be seen in the visualization below:

Two figures consisting of 10 symmetrically spaced arrows of equal length radiating out from a point on a blue field. Each arrow is labeled with one of the digits 0 through 9, and the tip of each arrow is surrounded by a reddish oval. In the image at left, the ovals for the number pairs 4 and 9, 8 and 0, and 2 and 5 blur into each other at their edges. In the image at right, the ovals are more compact, and there are clear boundaries of blue between any two of them.
The results of adding our extra term to the ArcFace loss function during training on the MNIST dataset of hand-drawn digits. The color intensity conveys the probability density distribution of embeddings within each class, with higher density depicted in red.

The addition of our TCM loss term may not lead to dramatic improvements in every instance. But because it can be used, at no added computational cost, with any choice of model and any choice of loss function, the occasions are rare when it wouldn’t be worth trying.

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. The Trust CX Innovations team is looking for an Applied Scientist with strong background in Generative AI space to build solutions that help in upholding customer trust for Alexa+. As an Applied Scientist in Trust CX innovations, you will be at the forefront of developing innovative solutions to critical challenges in AI trust and privacy. You'll lead research in trust-preserving machine learning techniques. We are working on revolutionizing the way Amazonians work and collaborate. You will help us achieve new heights of productivity through the power of advanced generative AI technologies. Key job responsibilities - Lead research initiatives in generative AI, focusing on LLMs, multimodal models, and frontier AI capabilities - Develop innovative approaches for model optimization, including prompt engineering, few-shot learning, and efficient fine-tuning - Pioneer new methods for AI safety, alignment, and responsible AI development - Design and execute sophisticated experiments to evaluate model performance and behavior - Lead the development of production-ready AI solutions that scale efficiently - Collaborate with product teams to translate research innovations into practical applications - Guide engineering teams in implementing AI models and systems at scale - Author technical papers for top-tier conferences - File patents for novel AI technologies and applications A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our trust-preserving experiences. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team Who We Are: Trust CX Innovations is a strategic innovation team within Amazon Devices & Services that focuses on advancing AI technology while prioritizing customer trust and experience. Our team operates at the intersection of artificial intelligence, privacy engineering and customer-centric design. Our Mission: To pioneer trustworthy AI innovations that delight customers while setting new standards for privacy and responsible technology development. We aim to transform how Amazon builds AI products by creating solutions that balance innovation with customer trust.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. The Trust CX Innovations team is looking for an Applied Scientist with strong background in Generative AI space to build solutions that help in upholding customer trust for Alexa+. As an Applied Scientist in Trust CX innovations, you will be at the forefront of developing innovative solutions to critical challenges in AI trust and privacy. You'll lead research in trust-preserving machine learning techniques. We are working on revolutionizing the way Amazonians work and collaborate. You will help us achieve new heights of productivity through the power of advanced generative AI technologies. Key job responsibilities - Lead research initiatives in generative AI, focusing on LLMs, multimodal models, and frontier AI capabilities - Develop innovative approaches for model optimization, including prompt engineering, few-shot learning, and efficient fine-tuning - Pioneer new methods for AI safety, alignment, and responsible AI development - Design and execute sophisticated experiments to evaluate model performance and behavior - Lead the development of production-ready AI solutions that scale efficiently - Collaborate with product teams to translate research innovations into practical applications - Guide engineering teams in implementing AI models and systems at scale - Author technical papers for top-tier conferences - File patents for novel AI technologies and applications A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our trust-preserving experiences. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team Who We Are: Trust CX Innovations is a strategic innovation team within Amazon Devices & Services that focuses on advancing AI technology while prioritizing customer trust and experience. Our team operates at the intersection of artificial intelligence, privacy engineering and customer-centric design. Our Mission: To pioneer trustworthy AI innovations that delight customers while setting new standards for privacy and responsible technology development. We aim to transform how Amazon builds AI products by creating solutions that balance innovation with customer trust.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.