NeurIPS: Why causal-representation learning may be the future of AI

Francesco Locatello on the four NeurIPS papers he coauthored this year, which largely concern generalization to out-of-distribution test data.

In a conversation right before the 2021 Conference on Neural Information Processing Systems (NeurIPS), Amazon vice president and distinguished scientist Bernhard Schölkopf — according to Google Scholar, the most highly cited researcher in the field of causal inference — said that the next frontier in artificial-intelligence research was causal-representation learning.

Where existing approaches to causal inference use machine learning to discover causal relationships between variables — say, the latencies of various interrelated services on a website — causal-representation learning learns the variables themselves. “These kinds of causal representations will also go toward reasoning, which we will ultimately need if we want to move away from this pure pattern recognition view of intelligence,” Schölkopf said.

Francesco.jpg
Senior applied scientist Francesco Locatello.

Francesco Locatello, a senior applied scientist with Amazon Web Services, leads Amazon’s research on causal-representation learning, and he’s a coauthor on four papers at this year’s NeurIPS.

Assaying out-of-distribution generalization in transfer learning” concerns one of the most compelling applications of causal inference in machine learning: generalizing models trained on data with a particular probability distribution to real-world data with a different distribution.

“When you do standard machine learning, you are drawing independent samples from some probability distribution, and then you train a model that's going to generalize to the same distribution,” Locatello explains. “You're describing a physical system using a single probability distribution. Causal models are different because they model every possible state that this physical system can take as a result of an intervention. So instead of having a single probability distribution, you have a set of distributions.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“What does it mean that your test data comes from a different distribution? You have the same underlying physical system; the causal structure is the same. It's just a new intervention you have not seen. Your test distribution is different than the training, but now it's not an arbitrary distribution. It’s well posed because it's entailed by the causal structure, and it's a meaningful distribution that may happen in the real world.”

In “Assaying out-of-distribution generalization in transfer learning”, Locatello explains, “what we do is to collect a huge variety of datasets that are constructed for or adapted to this scenario where you have a very narrow data set that you can use for transfer learning, and then you have a wide variety of test data that is all out of distribution. We look at the different approaches that have been studied in the literature and compare them on fair ground.”

Although none of the approaches canvassed in the paper explicitly considers causality, Locatello says, “causal approaches should eventually be able to do better on this benchmark, and this will allow us to evaluate our progress. That's why we built it.”

Neural circuits

Today’s neural networks do representation learning as a matter of course: their inputs are usually raw data, and they learn during training which aspects of the data are most useful for the task at hand. As Schölkopf pointed out in conversation last year, causal-representation learning would simply bring causal machine learning models up to speed with conventional models.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“The important thing to realize is that most machine learning applications don't come structured as a set of well-defined random variables that fully align with the underlying functioning of a physical system,” Locatello explains. “We still want to model these systems in terms of abstract variables, but nobody gives these variables to us. So you may want to learn them in order to be able to perform causal inference.”

Among his and his colleagues’ NeurIPS papers, Locatello says, the one that comes closest to the topic of causal-representation learning is “Neural attentive circuits”. Causal models typically represent causal relationships using graphs, and a neural network, too, can be thought of as an enormous graph. Locatello and his collaborators are trying to make that analogy explicit, by training a neural network to mimic the structure of a causal network.

Neural attentive circuits.png
Visualizations of graph structures learned by neural attentive circuits, from "Neural attentive circuits".

“This is a follow-up on a paper we had last year in NeurIPS,” Locatello says. “The inspiration was to design architectures that behave more similarly to causal models, where you have the noise variables — that's the data — and then you have variables that are being manipulated by functions, and they simply communicate with each other in a graph. And this graph can change dynamically when a distribution changes, for example, because of an intervention.

“In the first paper, we developed an architecture that behaves exactly like that: you have a set of neural functions that can be composed on the fly, depending on the data and the problem. The functions, the routing, and the stitching of the functions are learned. Everything is learned. But it turns out that dynamic stitching is not very scalable.

“In this new work, we essentially compiled the stitching of the functions so that for each sample it's decided beforehand — where it's going to go through the network, how the functions are going to be composed. Instead of doing it on the fly one layer at a time, you decide for the overall forward pass. And we demonstrated that these sparse learned connectivity patterns improve out-of-distribution generalization.”

Success stories

Locatello’s other NeurIPS papers are on more-conventional machine learning topics. “Self supervised amodal video object segmentation” considers the problem of reconstructing the silhouette of an occluded object, which is crucial to robotics applications, including autonomous cars.

Locatello 16_9.png
Segmentations of partially occluded objects, from "Self supervised amodal video object segmentation".

“We exploit the principle that you can build information about an object over time in a video,” Locatello explains. “Perhaps in past frames you've seen parts of the objects that are now occluded. If you can remember that you've seen this object before, and this was its segmentation mask, you can build up your segmentation over time.”

The final paper, “Are two heads the same as one? Identifying disparate treatment in fair neural networks”, considers models whose training objectives are explicitly designed to minimize bias across different types of inputs. Locatello and his colleagues find that frequently, such models — purely through training, without any human intervention — develop two “heads”: that is, they learn two different pathways through the neural network, one for inputs in the sensitive class, and one for all other inputs.

Related content
Amazon ICML paper proposes information-theoretic measurement of quantitative causal contribution.

The researchers argue that, since the network is learning two heads, anyway, it might as well be designed with a two-headed architecture: that would improve performance while meeting the same fairness standard. But this approach hasn’t been adopted, as it runs afoul of rules prohibiting disparate treatment of different groups. In this case, however, disparate treatment could be the best way to ensure fair treatment.

These last two papers are only obliquely related to causality. But, Locatello says, “causal-representation learning is a very young field. So we are trying to identify success stories, and I think these papers are going in that direction.”

“It's clear that causality will have a role in future machine learning,” he adds, “because there are a lot of open problems in machine learning that can at least be partially addressed when you start looking at causal models. And my goal really is to realize the benefits of causal models in mainstream machine learning applications. That's why some of these works are not necessarily about causality, but closer to machine learning. Because ultimately, that's our goal.”

Learn more about Amazon at NeurIPS 2022

For more on the Amazon research being presented at this year's NeurIPS, see our quick guide to Amazon's NeurIPS 2022 papers.

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!