NeurIPS: Why causal-representation learning may be the future of AI

Francesco Locatello on the four NeurIPS papers he coauthored this year, which largely concern generalization to out-of-distribution test data.

In a conversation right before the 2021 Conference on Neural Information Processing Systems (NeurIPS), Amazon vice president and distinguished scientist Bernhard Schölkopf — according to Google Scholar, the most highly cited researcher in the field of causal inference — said that the next frontier in artificial-intelligence research was causal-representation learning.

Where existing approaches to causal inference use machine learning to discover causal relationships between variables — say, the latencies of various interrelated services on a website — causal-representation learning learns the variables themselves. “These kinds of causal representations will also go toward reasoning, which we will ultimately need if we want to move away from this pure pattern recognition view of intelligence,” Schölkopf said.

Francesco.jpg
Senior applied scientist Francesco Locatello.

Francesco Locatello, a senior applied scientist with Amazon Web Services, leads Amazon’s research on causal-representation learning, and he’s a coauthor on four papers at this year’s NeurIPS.

Assaying out-of-distribution generalization in transfer learning” concerns one of the most compelling applications of causal inference in machine learning: generalizing models trained on data with a particular probability distribution to real-world data with a different distribution.

“When you do standard machine learning, you are drawing independent samples from some probability distribution, and then you train a model that's going to generalize to the same distribution,” Locatello explains. “You're describing a physical system using a single probability distribution. Causal models are different because they model every possible state that this physical system can take as a result of an intervention. So instead of having a single probability distribution, you have a set of distributions.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“What does it mean that your test data comes from a different distribution? You have the same underlying physical system; the causal structure is the same. It's just a new intervention you have not seen. Your test distribution is different than the training, but now it's not an arbitrary distribution. It’s well posed because it's entailed by the causal structure, and it's a meaningful distribution that may happen in the real world.”

In “Assaying out-of-distribution generalization in transfer learning”, Locatello explains, “what we do is to collect a huge variety of datasets that are constructed for or adapted to this scenario where you have a very narrow data set that you can use for transfer learning, and then you have a wide variety of test data that is all out of distribution. We look at the different approaches that have been studied in the literature and compare them on fair ground.”

Although none of the approaches canvassed in the paper explicitly considers causality, Locatello says, “causal approaches should eventually be able to do better on this benchmark, and this will allow us to evaluate our progress. That's why we built it.”

Neural circuits

Today’s neural networks do representation learning as a matter of course: their inputs are usually raw data, and they learn during training which aspects of the data are most useful for the task at hand. As Schölkopf pointed out in conversation last year, causal-representation learning would simply bring causal machine learning models up to speed with conventional models.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“The important thing to realize is that most machine learning applications don't come structured as a set of well-defined random variables that fully align with the underlying functioning of a physical system,” Locatello explains. “We still want to model these systems in terms of abstract variables, but nobody gives these variables to us. So you may want to learn them in order to be able to perform causal inference.”

Among his and his colleagues’ NeurIPS papers, Locatello says, the one that comes closest to the topic of causal-representation learning is “Neural attentive circuits”. Causal models typically represent causal relationships using graphs, and a neural network, too, can be thought of as an enormous graph. Locatello and his collaborators are trying to make that analogy explicit, by training a neural network to mimic the structure of a causal network.

Neural attentive circuits.png
Visualizations of graph structures learned by neural attentive circuits, from "Neural attentive circuits".

“This is a follow-up on a paper we had last year in NeurIPS,” Locatello says. “The inspiration was to design architectures that behave more similarly to causal models, where you have the noise variables — that's the data — and then you have variables that are being manipulated by functions, and they simply communicate with each other in a graph. And this graph can change dynamically when a distribution changes, for example, because of an intervention.

“In the first paper, we developed an architecture that behaves exactly like that: you have a set of neural functions that can be composed on the fly, depending on the data and the problem. The functions, the routing, and the stitching of the functions are learned. Everything is learned. But it turns out that dynamic stitching is not very scalable.

“In this new work, we essentially compiled the stitching of the functions so that for each sample it's decided beforehand — where it's going to go through the network, how the functions are going to be composed. Instead of doing it on the fly one layer at a time, you decide for the overall forward pass. And we demonstrated that these sparse learned connectivity patterns improve out-of-distribution generalization.”

Success stories

Locatello’s other NeurIPS papers are on more-conventional machine learning topics. “Self supervised amodal video object segmentation” considers the problem of reconstructing the silhouette of an occluded object, which is crucial to robotics applications, including autonomous cars.

Locatello 16_9.png
Segmentations of partially occluded objects, from "Self supervised amodal video object segmentation".

“We exploit the principle that you can build information about an object over time in a video,” Locatello explains. “Perhaps in past frames you've seen parts of the objects that are now occluded. If you can remember that you've seen this object before, and this was its segmentation mask, you can build up your segmentation over time.”

The final paper, “Are two heads the same as one? Identifying disparate treatment in fair neural networks”, considers models whose training objectives are explicitly designed to minimize bias across different types of inputs. Locatello and his colleagues find that frequently, such models — purely through training, without any human intervention — develop two “heads”: that is, they learn two different pathways through the neural network, one for inputs in the sensitive class, and one for all other inputs.

Related content
Amazon ICML paper proposes information-theoretic measurement of quantitative causal contribution.

The researchers argue that, since the network is learning two heads, anyway, it might as well be designed with a two-headed architecture: that would improve performance while meeting the same fairness standard. But this approach hasn’t been adopted, as it runs afoul of rules prohibiting disparate treatment of different groups. In this case, however, disparate treatment could be the best way to ensure fair treatment.

These last two papers are only obliquely related to causality. But, Locatello says, “causal-representation learning is a very young field. So we are trying to identify success stories, and I think these papers are going in that direction.”

“It's clear that causality will have a role in future machine learning,” he adds, “because there are a lot of open problems in machine learning that can at least be partially addressed when you start looking at causal models. And my goal really is to realize the benefits of causal models in mainstream machine learning applications. That's why some of these works are not necessarily about causality, but closer to machine learning. Because ultimately, that's our goal.”

Learn more about Amazon at NeurIPS 2022

For more on the Amazon research being presented at this year's NeurIPS, see our quick guide to Amazon's NeurIPS 2022 papers.

Related content

US, WA, Bellevue
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing groundbreaking products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team! Key job responsibilities * Design, develop, and evaluate highly innovative models for Natural Language Programming (NLP), Large Language Model (LLM), or Large Computer Vision Models. * Use SQL to query and analyze the data. * Use Python, Jupyter notebook, and Pytorch to train/test/deploy ML models. * Use machine learning and analytical techniques to create scalable solutions for business problems. * Research and implement novel machine learning and statistical approaches. * Mentor interns. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan Learn more about our benefits here: https://amazon.jobs/en/internal/benefits/us-benefits-and-stock About the team When a customer returns a package to Amazon, the request and package will be passed through our WWRR machine learning (ML) systems so that we could improve the customer experience, identify return root cause, optimize re-use, and evaluate the returned package. Our problems touch multiple modalities spanning from: textual, categorical, image, to speech data. We operate at large scale and rely on state-of-the-art modeling techniques to power our ML models: XGBoost, BERT, Vision Transformers, Large Language Models.
US, CA, Santa Clara
Amazon CloudWatch is the native AWS monitoring and observability service for cloud resources and applications. We are seeking a talented Senior Applied Scientist to develop next-generation scientific methods and infrastructure to support a core AWS business that delivers critical services to millions of customers operating at scale. This is a high visibility and high impact role that work on highly strategic projects in the AI/ML and Analytics space, will interact with all levels of AWS leadership. We are developing solutions that not only surface the “what” but also the “why” and “how to fix it”, without requiring operators to have extensive domain knowledge and technical expertise to efficiently troubleshoot and remediate incidents. Using decades of AWS operational excellence coupled with the advances in LLMs and Gen-AI technologies, we are transforming the very core of how customers can effortlessly interact with our offerings to build and operate their applications in the cloud. We are hiring to grow our team, and are looking for well-rounded applied scientists with backgrounds in machine learning, foundation models, and natural language processing. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, mission driven team, then this is your moment to join us on this exciting journey! Key job responsibilities As an Applied Scientist II you will be responsible for * Research and development of algorithms that improve training of foundation models across pre-training, multitask learning, supervised finetuning, and reinforcement learning from human feedback * Research and development of novel approaches for anomaly detection, root cause analysis, and provide intelligent insights from vast amounts of monitoring and observability data * Collaborating with scientists, engineers, and Product Managers across CloudWatch team as well as directly with customers * Lead key science initiatives in strategic investment areas of AI/ML/LLM Ops and Observability * Be an industry thought leader representing Amazon at top-tier scientific conferences * Engaging in the hiring process and developing, growing, and mentoring junior scientists A day in the life Working closely with and across agile teams, you will be able to see and feel the impact of your work on our customers. This is a high visibility and high impact role that will interact with all levels of AWS leadership. Our ideal candidate is excited about the incredible opportunity that cloud monitoring represents and is deeply passionate about delivering the highest quality services leveraging AI/ML/LLMs. You’re naturally customer centric and thrive in a fast-paced environment that requires strong technical and business judgment and solid communication skills. About the team Amazon CloudWatch Logs is a core monitoring service used by millions of AWS customers. We move fast and have delivered remarkable products and features over the last few years to streamline how AWS customers troubleshoot their critical applications. Our mission is to be the most cost effective, integrated, fast, and secure logs management and analytics platform for AWS customers. We are a diverse group of product and engineering professionals that are passionate about delivering logging features that delight customers operating at any scale. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
NL, Amsterdam
Are you interested in creating a large business impact on millions of customers through the use of machine learning and analytics? We are seeking an Data Scientist to join our PriMA (Prime & Marketing) science team to model customer behavior, improve the engagement of our existing customers, and help us grow our customer base. In this role, you will collaborate with cross-functional teams and stakeholders to solve problems, and you will regularly interact with software engineering teams and business leadership. Some of the technical challenges you will contribute in this role are: - Measuring marketing campaigns across external marketing channels (Youtube, TikTok, Google,....) - Modeling the causal impact that some actions have over customers. - Building better product recommendation for deals and promotions at Amazon Key job responsibilities - Develop accurate and scalable data science models to address business use cases ranging from: analyzing customer behavior, building recommender systems to increase engagement, or measuring the impact of marketing channels. - Partner with engineers and applied scientists to implement data science solutions for complex business problems, guiding the application of best practices in data analysis, statistical modeling, and machine learning. - Lead comprehensive data analyses to provide insights and recommendations that help management and business stakeholders make key strategic decisions. About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 50 people (comprising other job families like SDEs) that gives support to all the tech needs of the Prime & marketing org.
US, WA, Seattle
This is a unique opportunity to join a small, high-impact team working on AI agents for health initiatives. You will lead the crucial data foundation of our project, managing health data acquisition, processing, and model evaluation, while also contributing to machine learning model development. Your work will directly influence the creation and improvement of AI solutions that could significantly impact how individuals manage their daily health and long-term wellness goals. If you're passionate about leveraging data and developing ML models to solve meaningful problems in healthcare through AI, this role is for you. You'll work on large-scale data processing, design annotation workflows, develop evaluation metrics, and contribute to the machine learning algorithms that drive the performance of our health AI agents. You'll have the chance to innovate alongside healthcare experts and data scientists. In this early-stage initiative, you'll have significant influence on our data strategies and ML approaches, shaping how they drive our AI solutions. This is an excellent opportunity for a high-judgment data scientist with ML expertise to demonstrate impact and make key decisions that will form the backbone of our health AI initiatives. Key job responsibilities Be the complete owner for health data acquisition, processing, and quality assurance Design and oversee data annotation workflows Collaborate on data sourcing strategies Lead health data acquisition and processing initiatives Manage AI agent example annotation processes Develop and implement data evaluation metrics Design, implement, and evaluate machine learning models for AI agents, with a focus on improving natural language understanding and generation in health contexts A day in the life You'll work with a cross-disciplinary team to source, evaluate, and leverage health data for AI agent development. You'll shape data acquisition strategies, annotation workflows, and machine learning models to enhance our AI's health knowledge. Expect to dive deep into complex health datasets, challenge conventional data evaluation metrics, and continuously refine our AI agents' ability to understand and respond to health-related queries.
BR, SP, Sao Paulo
Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
US, WA, Bellevue
Ring is looking for a Senior Applied Science Manager to lead the development of computer vision algorithm on the Edge. In this role, you will be the leader of our passionate, talented, and inventive scientists, to develop industry-leading Computer Vision (CV), Multimodal, and AI and drive them successfully to production for the benefit of millions of Amazon Devices users. This is a unique, high visibility opportunity for a leader who wants to have business impact, and dive deep into computer vision problems. We are particularly interested in candidates with experience productizing edge-based computer vision systems. Key job responsibilities As a Senior Manager, Applied Science, you bring structure to ambiguous business problems and use science, logic, and practical experience to decompose them into straightforward, scalable solutions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems; you're interested in learning; and you acquire skills and expertise as needed. The ideal candidate is a strong, creative and highly-motivated Scientist with hands-on experience in leading multiple research and engineering initiatives. You balance technical leadership with strong business judgment to make the right decisions about technology, tools, and methodologies.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, CA, San Diego
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. As an Applied Scientist, you will be working closely with a team of applied scientists and engineers to build systems that shape the future of Amazon's by automatically generating relevant content and building a whole page experience that is coherent, dynamic, and interesting. You will improve ranking and optimization in our algorithm. You will participate in driving features from idea to deployment, and your work will directly impact millions of customers.