On-device speech processing makes Alexa faster, lower-bandwidth

Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

At Amazon, we always look to invent new technology for improving customer experience. One technology we have been working on at Alexa is on-device speech processing, which has multiple benefits: a reduction in latency, or the time it takes Alexa to respond to queries; lowered bandwidth consumption, which is important on portable devices; and increased availability in in-car units and other applications where Internet connectivity is intermittent. On-device processing also enables the fusion of the speech signal with other modalities, like vision, for features such as Alexa’s natural turn-taking.

In the last year, we’ve continued to build upon Alexa’s on-device speech-processing capabilities. As a result of these inventions, we are launching a new setting that gives customers the option of having the audio of their Alexa voice requests processed locally, without being sent to the cloud.

In the cloud, storage space and computational capacity are effectively unconstrained. To ensure accuracy, our cloud models can be large and computationally demanding. Executing the same functions on-device means compressing our models into less than 1% as much space — with minimal loss in accuracy.

Moreover, in the cloud, the separate components of Alexa’s speech-processing stack — automatic speech recognition (ASR), whisper detection, and speaker identification — run on separate server nodes with their own powerful processors. On-device, those functions have to share hardware not only with each other but with Alexa’s other core device functions, such as music playback.

Re-creating Alexa’s speech-processing stack on-device was a massive undertaking. New methods for training small-footprint ASR models were part of the solution, but so were innovations in system design and hardware-software codesign. It was a joint effort across science and engineering teams over a span of years. Here’s a quick overview of how it works.

System architecture

Our on-device ASR model takes in an acoustic speech signal and outputs a set of hypotheses about what the speaker said, ranked according to probability. We represent those hypotheses as a lattice — a graph whose edges represent recognized words and the probability that a given word follows from the previous one.

Sample lattice.cropped.png
An example of a lattice representing ASR hypotheses.

With cloud-based ASR, encrypted audio streams to the cloud in small snippets called “frames”. With on-device ASR, only the lattice is sent to the cloud, where a large and powerful neural language model reranks the hypotheses. The lattice can’t be sent until the customer has finished speaking, as words later in a sequence can dramatically change the overall probability of a hypothesis.

The model that determines when the customer has finished speaking is called an end-pointer. End-pointers offer a natural trade-off between accuracy and latency: an aggressive end-pointer will initiate speech processing earlier, but it might cut the speaker off prematurely, resulting in a poor customer experience.

On the device, we in fact run two end-pointers: One is a speculative end-pointer that we have tuned to be about 200 milliseconds faster than the final end-pointer, so we can initiate downstream processing — such as natural-language understanding (NLU) — ahead of the final end-pointed ASR result. In exchange for speed, however, we trade off a little accuracy.

The final end-pointer takes longer to make a decision but is more accurate. In cases in which the first end-pointer cuts speech off too early, the final end-pointer sends a revised lattice and the instruction to reset downstream processing. In the large majority of cases, however, the aggressive end-pointer is correct, which reduces user-perceived latency, since downstream tasks are initiated earlier.

Another aspect of ASR that had to move on-device is context awareness. When computing the probabilities in a lattice, the ASR model should, for instance, give added weight to otherwise uncommon names that happen to be in the customer’s address book or the names the customer has assigned to household devices.

AmazonScience_StaticGraphic
A diagram of the on-device ASR network, with a closeup of the biasing mechanism that allows the network to ingest dynamic content. (Based on figures in "Context-aware Transformer transducer for speech recognition")
Attention map.png
This attention map indicates that the trained network is attending to the correct entry in a list of Alexa-linked home appliances. (From "Context-aware Transformer transducer for speech recognition")

Context awareness can’t wait for the cloud because the lattice, though it encodes multiple hypotheses, doesn’t come close to encoding all possible hypotheses. When constructing the lattice, the ASR system has to prune a lot of low-probability hypotheses. If context awareness isn’t built into the on-device model, names of contacts or linked skills might end up getting pruned.

Initially, we use a so-called shallow-fusion model to add context and personalize content on-device. When the system is building the lattice, it boosts the probabilities of contextually relevant words such as contact or appliance names.

The probability boosts are heuristic, however — they’re not learned jointly with the core ASR model. To achieve even better accuracy on personalized and long-tail content, we have developed a multihead attention-based context-biasing mechanism that is jointly trained with the rest of the ASR subnetworks.

Model training

On-device ASR required us to build a new model from the ground up, an end-to-end recurrent neural network-transducer (RNN-T) model that directly maps the input speech signal to an output sequence of words. Using a single neural network results in a significantly reduced memory footprint. But we had to develop new techniques, both for inference and for training, to achieve the degree of accuracy and compression that would let this technology handle utterances on-device.

Previously on Amazon Science, we’ve discussed some of the techniques we used to increase the accuracy of small-footprint end-to-end ASR models. With teacher-student training, for instance, we teach a small, lean model to match the outputs of a more-powerful but slower model. We developed a training methodology that made it possible to do teacher-student training efficiently with a million hours of unannotated speech.

Stream-level context.png
During the training of a context-aware ASR model, a long-short-term-memory (LSTM) encoder encodes both unlabeled and labeled segments of the audio stream, so the model can use the entire input audio to improve ASR accuracy. (From "Improving RNN-T ASR accuracy using context audio")

To further boost the accuracy of on-device RNN-T ASR, we developed techniques that allow the neural network to learn and exploit audio context within a stream. For example, for a stream comprising two utterances, “Alexa” and “Play a song”, the audio context from the keyword segment (“Alexa”) helps the model focus on the foreground speech and speaker. Separately, we implemented a novel discriminative-loss and training algorithm that aims at directly minimizing the word error rate (WER) of RNN-T ASR.

On top of these innovations, however, we still had to develop some new compression techniques to get the RNN-T to run efficiently on-device. A neural network consists of simple processing nodes each of which is connected to several others. The connections between nodes have associated weights, which determine how much one node’s output contributes to the computation performed by the next node.

One way to shrink a neural network’s memory footprint is to quantize its weights — to divide the total range of weights into a small set of intervals and use a single value to represent all the weights in each interval. So, for instance, the weights 0.70, 0.76, and 0.79 might all get quantized to the single value 0.75. Specifying an interval requires fewer bits than specifying several different floating-point values.

If quantization is done after a network has been trained, performance can suffer. We developed a method of <i class="rte2-style-italic">quantization-aware</i> training that imposes a probability distribution on the network weights during training, so that they can be easily quantized with little effect on performance. Unlike previous quantization-aware training methods, which mostly take quantization into account in the forward pass, ours accounts for quantization in the backward direction, during weight updates, through network loss regularization. And it does that efficiently.

A way to make neural networks run more efficiently — also a vital concern on resource-constrained devices — is to reduce low weights to zero. Computations involving zero weights can be discarded, reducing the computational burden.

Sparsification.png
Over successive training epochs, sparsification gradually drops low weights in a weight matrix.

But again, doing that reduction after the network is trained can compromise performance. We developed a <i class="rte2-style-italic">sparsification</i> method that enables the gradual reduction of low-value weights during training, so the network learns a model amenable to weight pruning.

Neural networks are typically trained on multiple passes through the same set of training data, or epochs. During each epoch, we force the network weights to diverge more and more, so that at the end of the final epoch, a fixed number of weights — say, half — are effectively zero. They can be safely discarded.

AmazonScience_AmnetDemo_V1.gif
A demonstration of the branching encoder network.

To improve on-device efficiency, we also developed a branching encoder network that uses two different neural networks to convert speech inputs into numeric representations suitable for speech classification. One network is complex, one simple, and the ASR model decides on the fly whether it can get away with passing an input frame to the simple model, saving computational cost and time. We described this work in more detail in an earlier Amazon Science blog post.

Hardware-software codesign

Quantization and sparsification make no difference to performance if the underlying hardware can’t take advantage of them. Another key to getting ASR to run on-device was the design of Amazon’s AZ family of neural edge processors, which are optimized for our specific approach to compression.

For one thing, where a typical processor might represent data using 16 or 32 bits, for certain core operations, the AZ processors accelerate computation by using an 8-bit or even lower-bit representation, because that’s all we need to handle quantized values.

The weights of a neural network are typically represented using a matrix — a big grid of numbers. A matrix half of whose values are zeroes takes up as much space as a matrix that’s all nonzero.

On computer chips, transferring data tends to be much more time consuming than executing computations. So when we load our matrix into memory, we use a compression scheme that takes advantage of low-bit quantization and zero values. The circuitry for decoding the compressed representation is built into the chip.

In the neural processor’s memory, the matrix is reconstituted: the zeroes are filled back in. But the processor’s circuitry is designed to recognize zero values and discard computations involving them. So the time savings from sparsification are realized in the hardware itself.

Moving speech recognition on device entails a number of innovations in other areas, such as reduction in the bandwidth required for model updates and compression of NLU models, to ensure basic functionality on devices with intermittent Internet connectivity. And we’re also hard at work on multilingual on-device ASR models for dynamic language switching, or automatically recognizing which of two languages a customer is speaking and responding in kind.

The launch of on-device speech processing is a huge step in bringing the benefits of “processing on the edge” to our customers, and we will continue to invent on their behalf in this area.

Research areas

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.