On-device speech processing makes Alexa faster, lower-bandwidth

Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

At Amazon, we always look to invent new technology for improving customer experience. One technology we have been working on at Alexa is on-device speech processing, which has multiple benefits: a reduction in latency, or the time it takes Alexa to respond to queries; lowered bandwidth consumption, which is important on portable devices; and increased availability in in-car units and other applications where Internet connectivity is intermittent. On-device processing also enables the fusion of the speech signal with other modalities, like vision, for features such as Alexa’s natural turn-taking.

In the last year, we’ve continued to build upon Alexa’s on-device speech-processing capabilities. As a result of these inventions, we are launching a new setting that gives customers the option of having the audio of their Alexa voice requests processed locally, without being sent to the cloud.

In the cloud, storage space and computational capacity are effectively unconstrained. To ensure accuracy, our cloud models can be large and computationally demanding. Executing the same functions on-device means compressing our models into less than 1% as much space — with minimal loss in accuracy.

Moreover, in the cloud, the separate components of Alexa’s speech-processing stack — automatic speech recognition (ASR), whisper detection, and speaker identification — run on separate server nodes with their own powerful processors. On-device, those functions have to share hardware not only with each other but with Alexa’s other core device functions, such as music playback.

Re-creating Alexa’s speech-processing stack on-device was a massive undertaking. New methods for training small-footprint ASR models were part of the solution, but so were innovations in system design and hardware-software codesign. It was a joint effort across science and engineering teams over a span of years. Here’s a quick overview of how it works.

System architecture

Our on-device ASR model takes in an acoustic speech signal and outputs a set of hypotheses about what the speaker said, ranked according to probability. We represent those hypotheses as a lattice — a graph whose edges represent recognized words and the probability that a given word follows from the previous one.

Sample lattice.cropped.png
An example of a lattice representing ASR hypotheses.

With cloud-based ASR, encrypted audio streams to the cloud in small snippets called “frames”. With on-device ASR, only the lattice is sent to the cloud, where a large and powerful neural language model reranks the hypotheses. The lattice can’t be sent until the customer has finished speaking, as words later in a sequence can dramatically change the overall probability of a hypothesis.

The model that determines when the customer has finished speaking is called an end-pointer. End-pointers offer a natural trade-off between accuracy and latency: an aggressive end-pointer will initiate speech processing earlier, but it might cut the speaker off prematurely, resulting in a poor customer experience.

On the device, we in fact run two end-pointers: One is a speculative end-pointer that we have tuned to be about 200 milliseconds faster than the final end-pointer, so we can initiate downstream processing — such as natural-language understanding (NLU) — ahead of the final end-pointed ASR result. In exchange for speed, however, we trade off a little accuracy.

The final end-pointer takes longer to make a decision but is more accurate. In cases in which the first end-pointer cuts speech off too early, the final end-pointer sends a revised lattice and the instruction to reset downstream processing. In the large majority of cases, however, the aggressive end-pointer is correct, which reduces user-perceived latency, since downstream tasks are initiated earlier.

Another aspect of ASR that had to move on-device is context awareness. When computing the probabilities in a lattice, the ASR model should, for instance, give added weight to otherwise uncommon names that happen to be in the customer’s address book or the names the customer has assigned to household devices.

AmazonScience_StaticGraphic
A diagram of the on-device ASR network, with a closeup of the biasing mechanism that allows the network to ingest dynamic content. (Based on figures in "Context-aware Transformer transducer for speech recognition")
Attention map.png
This attention map indicates that the trained network is attending to the correct entry in a list of Alexa-linked home appliances. (From "Context-aware Transformer transducer for speech recognition")

Context awareness can’t wait for the cloud because the lattice, though it encodes multiple hypotheses, doesn’t come close to encoding all possible hypotheses. When constructing the lattice, the ASR system has to prune a lot of low-probability hypotheses. If context awareness isn’t built into the on-device model, names of contacts or linked skills might end up getting pruned.

Initially, we use a so-called shallow-fusion model to add context and personalize content on-device. When the system is building the lattice, it boosts the probabilities of contextually relevant words such as contact or appliance names.

The probability boosts are heuristic, however — they’re not learned jointly with the core ASR model. To achieve even better accuracy on personalized and long-tail content, we have developed a multihead attention-based context-biasing mechanism that is jointly trained with the rest of the ASR subnetworks.

Model training

On-device ASR required us to build a new model from the ground up, an end-to-end recurrent neural network-transducer (RNN-T) model that directly maps the input speech signal to an output sequence of words. Using a single neural network results in a significantly reduced memory footprint. But we had to develop new techniques, both for inference and for training, to achieve the degree of accuracy and compression that would let this technology handle utterances on-device.

Previously on Amazon Science, we’ve discussed some of the techniques we used to increase the accuracy of small-footprint end-to-end ASR models. With teacher-student training, for instance, we teach a small, lean model to match the outputs of a more-powerful but slower model. We developed a training methodology that made it possible to do teacher-student training efficiently with a million hours of unannotated speech.

Stream-level context.png
During the training of a context-aware ASR model, a long-short-term-memory (LSTM) encoder encodes both unlabeled and labeled segments of the audio stream, so the model can use the entire input audio to improve ASR accuracy. (From "Improving RNN-T ASR accuracy using context audio")

To further boost the accuracy of on-device RNN-T ASR, we developed techniques that allow the neural network to learn and exploit audio context within a stream. For example, for a stream comprising two utterances, “Alexa” and “Play a song”, the audio context from the keyword segment (“Alexa”) helps the model focus on the foreground speech and speaker. Separately, we implemented a novel discriminative-loss and training algorithm that aims at directly minimizing the word error rate (WER) of RNN-T ASR.

On top of these innovations, however, we still had to develop some new compression techniques to get the RNN-T to run efficiently on-device. A neural network consists of simple processing nodes each of which is connected to several others. The connections between nodes have associated weights, which determine how much one node’s output contributes to the computation performed by the next node.

One way to shrink a neural network’s memory footprint is to quantize its weights — to divide the total range of weights into a small set of intervals and use a single value to represent all the weights in each interval. So, for instance, the weights 0.70, 0.76, and 0.79 might all get quantized to the single value 0.75. Specifying an interval requires fewer bits than specifying several different floating-point values.

If quantization is done after a network has been trained, performance can suffer. We developed a method of <i class="rte2-style-italic">quantization-aware</i> training that imposes a probability distribution on the network weights during training, so that they can be easily quantized with little effect on performance. Unlike previous quantization-aware training methods, which mostly take quantization into account in the forward pass, ours accounts for quantization in the backward direction, during weight updates, through network loss regularization. And it does that efficiently.

A way to make neural networks run more efficiently — also a vital concern on resource-constrained devices — is to reduce low weights to zero. Computations involving zero weights can be discarded, reducing the computational burden.

Sparsification.png
Over successive training epochs, sparsification gradually drops low weights in a weight matrix.

But again, doing that reduction after the network is trained can compromise performance. We developed a <i class="rte2-style-italic">sparsification</i> method that enables the gradual reduction of low-value weights during training, so the network learns a model amenable to weight pruning.

Neural networks are typically trained on multiple passes through the same set of training data, or epochs. During each epoch, we force the network weights to diverge more and more, so that at the end of the final epoch, a fixed number of weights — say, half — are effectively zero. They can be safely discarded.

AmazonScience_AmnetDemo_V1.gif
A demonstration of the branching encoder network.

To improve on-device efficiency, we also developed a branching encoder network that uses two different neural networks to convert speech inputs into numeric representations suitable for speech classification. One network is complex, one simple, and the ASR model decides on the fly whether it can get away with passing an input frame to the simple model, saving computational cost and time. We described this work in more detail in an earlier Amazon Science blog post.

Hardware-software codesign

Quantization and sparsification make no difference to performance if the underlying hardware can’t take advantage of them. Another key to getting ASR to run on-device was the design of Amazon’s AZ family of neural edge processors, which are optimized for our specific approach to compression.

For one thing, where a typical processor might represent data using 16 or 32 bits, for certain core operations, the AZ processors accelerate computation by using an 8-bit or even lower-bit representation, because that’s all we need to handle quantized values.

The weights of a neural network are typically represented using a matrix — a big grid of numbers. A matrix half of whose values are zeroes takes up as much space as a matrix that’s all nonzero.

On computer chips, transferring data tends to be much more time consuming than executing computations. So when we load our matrix into memory, we use a compression scheme that takes advantage of low-bit quantization and zero values. The circuitry for decoding the compressed representation is built into the chip.

In the neural processor’s memory, the matrix is reconstituted: the zeroes are filled back in. But the processor’s circuitry is designed to recognize zero values and discard computations involving them. So the time savings from sparsification are realized in the hardware itself.

Moving speech recognition on device entails a number of innovations in other areas, such as reduction in the bandwidth required for model updates and compression of NLU models, to ensure basic functionality on devices with intermittent Internet connectivity. And we’re also hard at work on multilingual on-device ASR models for dynamic language switching, or automatically recognizing which of two languages a customer is speaking and responding in kind.

The launch of on-device speech processing is a huge step in bringing the benefits of “processing on the edge” to our customers, and we will continue to invent on their behalf in this area.

Research areas

Related content

IN, TS, Hyderabad
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. - Mentor and guide team of Applied Scientists from technical and project advancement stand point - Contribute research to science community and conference quality level papers.
IN, TS, Hyderabad
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Hyderabad office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.
US, VA, Arlington
Are you fascinated by the power of Large Language Models (LLM) and Artificial Intelligence (AI) to transform the way we learn and interact with technology? Are you passionate about applying advanced machine learning (ML) techniques to solve complex challenges in the cloud learning space? If so, AWS Training & Certification (T&C) team has an exciting opportunity for you as an Applied Scientist. At AWS T&C, we strive to be leaders in not only how we learn about the latest AI/ML development and AWS services, but also how the same technologies transform the way we learn about them. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences in our Skill Builder platform for both new learners and seasoned developers. You will be a part of a global team that is focused on transforming how people learn. The position will interact with global leaders and teams across the globe as well as different business and technical organizations. Join us at the AWS T&C Science Team and become a part of a global team that is redefining the future of cloud learning. With access to vast amounts of data, exciting new technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the ways how worldwide learners engage with our learning system and builders develop on our platform. Together, we will drive innovation, solve complex problems, and shape the future of future-generation cloud builders. Please visit https://skillbuilder.awsto learn more. Key job responsibilities - Apply your expertise in LLM to design, develop, and implement scalable machine learning solutions that address challenges in discovery and engagement for our international audiences. - Collaborate with cross-functional teams, including software engineers, data engineers, scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance operational performance and customer experiences across Skill Builder. - Continuously explore and evaluate state-of-the-art techniques and methodologies to improve the accuracy and efficiency of AI/ML systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant and durable - Can span tasks from power grasps to fine dexterity and nonprehensile manipulation - Can navigate the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement robust sensing for dexterous manipulation, including but not limited to: Tactile sensing, Position sensing, Force sensing, Non-contact sensing - Prototype the various identified sensing strategies, considering the constraints of the rest of the hand design - Build and test full hand sensing prototypes to validate the performance of the solution - Develop testing and validation strategies, supporting fast integration into the rest of the robot - Partner with cross-functional teams to iterate on concepts and prototypes - Work with Amazon's robotics engineering and operations customers to deeply understand their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement innovative systems and algorithms, working hands-on with our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as locomotion, manipulation, sim2real transfer, multi-modal and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robot co-design, dexterous manipulation mechanisms, innovative actuation strategies, state estimation, low-level control, system identification, reinforcement learning, and sim-to-real transfer, as well as foundation models for perception and manipulation - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development - Develop and optimize control algorithms and sensing pipelines that enable robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! Amazon continues to develop its advertising program. Ads run in our Stores (including Consumer Stores, Books, Amazon Business, Whole Foods Market, and Fresh) and Media and Entertainment publishers (including Fire TV, Fire Tablets, Kindle, Alexa, Twitch, Prime Video, Freevee, Amazon Music, MiniTV, Audible, IMDb, and others). In addition to these first-party (1P) publishers, we also deliver ads on third-party (3P) publishers. We have a number of ad products, including Sponsored Products and Sponsored Brands, display and video products for smaller brands, including Sponsored Display and Sponsored TV. We also operate ad tech products, including Amazon Marketing Cloud (a clean-room for advertisers), Amazon Publisher Cloud (a clean-room for publishers), and Amazon DSP (an enterprise-level buying tool that brings together our ad tech for buying video, audio, and display ads). Key job responsibilities This role is focused on developing core models that will be the foundational of the core advertising-facing tools that we are launching. You will conduct literature reviews to stay on the current news in the field. You will regularly engage with product managers and technical program managers, who will partner with you to productize your work.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the International Emerging Stores organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team Central Machine Learning team works closely with the IES business and engineering teams in building ML solutions that create an impact for Emerging Marketplaces. This is a great opportunity to leverage your machine learning and data mining skills to create a direct impact on millions of consumers and end users.
US, NY, New York
The Ads Measurement Science team in the Measurement, Ad Tech, and Data Science (MADS) team of Amazon Ads serves a centralized role developing solutions for a multitude of performance measurement products. We create solutions that measure the comprehensive impact of ad spend, including sales impacts both online and offline and across timescales, and provide actionable insights that enable our advertisers to optimize their media portfolios. We leverage a host of scientific methods, approaches and technologies to accomplish this mission, including Generative AI, classical ML, Causal Inference, Natural Language Processing, and Computer Vision. As a Senior Applied Scientist on the team, you will lead the development of measurement solutions end-to-end from inception to production. You will propose, design, analyze, and productionize models to provide novel measurement insights to our customers. Key job responsibilities - Lead a team of scientists to innovate on state-of-the-art ads measurement solutions leveraging artificial intelligence, causal inference, natural language processing, computer vision, and large language models. - Directly contribute to the end-to-end delivery of production solutions through careful designs and owning implementation of significant portions of critical-path code - Lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for others with exemplary analyses; maintainable, extensible code; and simple, effective solutions. - Influence team business and engineering strategies. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations among scientists and engineers to move fast and broaden impact. - Actively engage in the development of others, both within and outside of the team. - Regularly engage with the broader science community with presentations, publications, and patents. About the team We are a team of scientists across Applied, Research, Data Science and Economist disciplines. You will work with colleagues with deep expertise in ML, NLP, CV, Gen AI, and Causal Inference with a diverse range of backgrounds. We partner closely with top-notch engineers, product managers, sales leaders, and other scientists with expertise in the ads industry and on building scalable modeling and software solutions.
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team Agentic AI drives innovation at the forefront of artificial intelligence, enabling customers to transform their businesses through cutting-edge AI solutions. We build and deliver the foundational AI services that power the future of cloud computing, helping organizations harness the potential of AI to solve their most complex challenges. Join our dynamic team of AI/ML practitioners, applied scientists, software engineers, and solution architects who work backwards from customer needs to create groundbreaking technologies. If you're passionate about shaping the future of AI while making a meaningful impact for customers worldwide, we want to hear from you. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.