On-device speech processing makes Alexa faster, lower-bandwidth

Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

At Amazon, we always look to invent new technology for improving customer experience. One technology we have been working on at Alexa is on-device speech processing, which has multiple benefits: a reduction in latency, or the time it takes Alexa to respond to queries; lowered bandwidth consumption, which is important on portable devices; and increased availability in in-car units and other applications where Internet connectivity is intermittent. On-device processing also enables the fusion of the speech signal with other modalities, like vision, for features such as Alexa’s natural turn-taking.

In the last year, we’ve continued to build upon Alexa’s on-device speech-processing capabilities. As a result of these inventions, we are launching a new setting that gives customers the option of having the audio of their Alexa voice requests processed locally, without being sent to the cloud.

In the cloud, storage space and computational capacity are effectively unconstrained. To ensure accuracy, our cloud models can be large and computationally demanding. Executing the same functions on-device means compressing our models into less than 1% as much space — with minimal loss in accuracy.

Moreover, in the cloud, the separate components of Alexa’s speech-processing stack — automatic speech recognition (ASR), whisper detection, and speaker identification — run on separate server nodes with their own powerful processors. On-device, those functions have to share hardware not only with each other but with Alexa’s other core device functions, such as music playback.

Re-creating Alexa’s speech-processing stack on-device was a massive undertaking. New methods for training small-footprint ASR models were part of the solution, but so were innovations in system design and hardware-software codesign. It was a joint effort across science and engineering teams over a span of years. Here’s a quick overview of how it works.

System architecture

Our on-device ASR model takes in an acoustic speech signal and outputs a set of hypotheses about what the speaker said, ranked according to probability. We represent those hypotheses as a lattice — a graph whose edges represent recognized words and the probability that a given word follows from the previous one.

Sample lattice.cropped.png
An example of a lattice representing ASR hypotheses.

With cloud-based ASR, encrypted audio streams to the cloud in small snippets called “frames”. With on-device ASR, only the lattice is sent to the cloud, where a large and powerful neural language model reranks the hypotheses. The lattice can’t be sent until the customer has finished speaking, as words later in a sequence can dramatically change the overall probability of a hypothesis.

The model that determines when the customer has finished speaking is called an end-pointer. End-pointers offer a natural trade-off between accuracy and latency: an aggressive end-pointer will initiate speech processing earlier, but it might cut the speaker off prematurely, resulting in a poor customer experience.

On the device, we in fact run two end-pointers: One is a speculative end-pointer that we have tuned to be about 200 milliseconds faster than the final end-pointer, so we can initiate downstream processing — such as natural-language understanding (NLU) — ahead of the final end-pointed ASR result. In exchange for speed, however, we trade off a little accuracy.

The final end-pointer takes longer to make a decision but is more accurate. In cases in which the first end-pointer cuts speech off too early, the final end-pointer sends a revised lattice and the instruction to reset downstream processing. In the large majority of cases, however, the aggressive end-pointer is correct, which reduces user-perceived latency, since downstream tasks are initiated earlier.

Another aspect of ASR that had to move on-device is context awareness. When computing the probabilities in a lattice, the ASR model should, for instance, give added weight to otherwise uncommon names that happen to be in the customer’s address book or the names the customer has assigned to household devices.

AmazonScience_StaticGraphic
A diagram of the on-device ASR network, with a closeup of the biasing mechanism that allows the network to ingest dynamic content. (Based on figures in "Context-aware Transformer transducer for speech recognition")
Attention map.png
This attention map indicates that the trained network is attending to the correct entry in a list of Alexa-linked home appliances. (From "Context-aware Transformer transducer for speech recognition")

Context awareness can’t wait for the cloud because the lattice, though it encodes multiple hypotheses, doesn’t come close to encoding all possible hypotheses. When constructing the lattice, the ASR system has to prune a lot of low-probability hypotheses. If context awareness isn’t built into the on-device model, names of contacts or linked skills might end up getting pruned.

Initially, we use a so-called shallow-fusion model to add context and personalize content on-device. When the system is building the lattice, it boosts the probabilities of contextually relevant words such as contact or appliance names.

The probability boosts are heuristic, however — they’re not learned jointly with the core ASR model. To achieve even better accuracy on personalized and long-tail content, we have developed a multihead attention-based context-biasing mechanism that is jointly trained with the rest of the ASR subnetworks.

Model training

On-device ASR required us to build a new model from the ground up, an end-to-end recurrent neural network-transducer (RNN-T) model that directly maps the input speech signal to an output sequence of words. Using a single neural network results in a significantly reduced memory footprint. But we had to develop new techniques, both for inference and for training, to achieve the degree of accuracy and compression that would let this technology handle utterances on-device.

Previously on Amazon Science, we’ve discussed some of the techniques we used to increase the accuracy of small-footprint end-to-end ASR models. With teacher-student training, for instance, we teach a small, lean model to match the outputs of a more-powerful but slower model. We developed a training methodology that made it possible to do teacher-student training efficiently with a million hours of unannotated speech.

Stream-level context.png
During the training of a context-aware ASR model, a long-short-term-memory (LSTM) encoder encodes both unlabeled and labeled segments of the audio stream, so the model can use the entire input audio to improve ASR accuracy. (From "Improving RNN-T ASR accuracy using context audio")

To further boost the accuracy of on-device RNN-T ASR, we developed techniques that allow the neural network to learn and exploit audio context within a stream. For example, for a stream comprising two utterances, “Alexa” and “Play a song”, the audio context from the keyword segment (“Alexa”) helps the model focus on the foreground speech and speaker. Separately, we implemented a novel discriminative-loss and training algorithm that aims at directly minimizing the word error rate (WER) of RNN-T ASR.

On top of these innovations, however, we still had to develop some new compression techniques to get the RNN-T to run efficiently on-device. A neural network consists of simple processing nodes each of which is connected to several others. The connections between nodes have associated weights, which determine how much one node’s output contributes to the computation performed by the next node.

One way to shrink a neural network’s memory footprint is to quantize its weights — to divide the total range of weights into a small set of intervals and use a single value to represent all the weights in each interval. So, for instance, the weights 0.70, 0.76, and 0.79 might all get quantized to the single value 0.75. Specifying an interval requires fewer bits than specifying several different floating-point values.

If quantization is done after a network has been trained, performance can suffer. We developed a method of <i class="rte2-style-italic">quantization-aware</i> training that imposes a probability distribution on the network weights during training, so that they can be easily quantized with little effect on performance. Unlike previous quantization-aware training methods, which mostly take quantization into account in the forward pass, ours accounts for quantization in the backward direction, during weight updates, through network loss regularization. And it does that efficiently.

A way to make neural networks run more efficiently — also a vital concern on resource-constrained devices — is to reduce low weights to zero. Computations involving zero weights can be discarded, reducing the computational burden.

Sparsification.png
Over successive training epochs, sparsification gradually drops low weights in a weight matrix.

But again, doing that reduction after the network is trained can compromise performance. We developed a <i class="rte2-style-italic">sparsification</i> method that enables the gradual reduction of low-value weights during training, so the network learns a model amenable to weight pruning.

Neural networks are typically trained on multiple passes through the same set of training data, or epochs. During each epoch, we force the network weights to diverge more and more, so that at the end of the final epoch, a fixed number of weights — say, half — are effectively zero. They can be safely discarded.

AmazonScience_AmnetDemo_V1.gif
A demonstration of the branching encoder network.

To improve on-device efficiency, we also developed a branching encoder network that uses two different neural networks to convert speech inputs into numeric representations suitable for speech classification. One network is complex, one simple, and the ASR model decides on the fly whether it can get away with passing an input frame to the simple model, saving computational cost and time. We described this work in more detail in an earlier Amazon Science blog post.

Hardware-software codesign

Quantization and sparsification make no difference to performance if the underlying hardware can’t take advantage of them. Another key to getting ASR to run on-device was the design of Amazon’s AZ family of neural edge processors, which are optimized for our specific approach to compression.

For one thing, where a typical processor might represent data using 16 or 32 bits, for certain core operations, the AZ processors accelerate computation by using an 8-bit or even lower-bit representation, because that’s all we need to handle quantized values.

The weights of a neural network are typically represented using a matrix — a big grid of numbers. A matrix half of whose values are zeroes takes up as much space as a matrix that’s all nonzero.

On computer chips, transferring data tends to be much more time consuming than executing computations. So when we load our matrix into memory, we use a compression scheme that takes advantage of low-bit quantization and zero values. The circuitry for decoding the compressed representation is built into the chip.

In the neural processor’s memory, the matrix is reconstituted: the zeroes are filled back in. But the processor’s circuitry is designed to recognize zero values and discard computations involving them. So the time savings from sparsification are realized in the hardware itself.

Moving speech recognition on device entails a number of innovations in other areas, such as reduction in the bandwidth required for model updates and compression of NLU models, to ensure basic functionality on devices with intermittent Internet connectivity. And we’re also hard at work on multilingual on-device ASR models for dynamic language switching, or automatically recognizing which of two languages a customer is speaking and responding in kind.

The launch of on-device speech processing is a huge step in bringing the benefits of “processing on the edge” to our customers, and we will continue to invent on their behalf in this area.

Research areas

Related content

US, CA, Santa Clara
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Join the next science and engineering revolution at Amazon's Delivery Foundation Model team, where you'll work alongside world-class scientists and engineers to pioneer the next frontier of logistics through advanced AI and foundation models. We are seeking an exceptional Senior Applied Scientist to help develop innovative foundation models that enable delivery of billions of packages worldwide. In this role, you'll combine highly technical work with scientific leadership, ensuring the team delivers robust solutions for dynamic real-world environments. Your team will leverage Amazon's vast data and computational resources to tackle ambitious problems across a diverse set of Amazon delivery use cases. Key job responsibilities - Design and implement novel deep learning architectures combining a multitude of modalities, including image, video, and geospatial data. - Solve computational problems to train foundation models on vast amounts of Amazon data and infer at Amazon scale, taking advantage of latest developments in hardware and deep learning libraries. - As a foundation model developer, collaborate with multiple science and engineering teams to help build adaptations that power use cases across Amazon Last Mile deliveries, improving experience and safety of a delivery driver, an Amazon customer, and improving efficiency of Amazon delivery network. - Guide technical direction for specific research initiatives, ensuring robust performance in production environments. - Mentor fellow scientists while maintaining strong individual technical contributions. A day in the life As a member of the Delivery Foundation Model team, you’ll spend your day on the following: - Develop and implement novel foundation model architectures, working hands-on with data and our extensive training and evaluation infrastructure - Guide and support fellow scientists in solving complex technical challenges, from trajectory planning to efficient multi-task learning - Guide and support fellow engineers in building scalable and reusable infra to support model training, evaluation, and inference - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems- Drive technical discussions within the team and and key stakeholders - Conduct experiments and prototype new ideas - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team The Delivery Foundation Model team combines ambitious research vision with real-world impact. Our foundation models provide generative reasoning capabilities required to meet the demands of Amazon's global Last Mile delivery network. We leverage Amazon's unparalleled computational infrastructure and extensive datasets to deploy state-of-the-art foundation models to improve the safety, quality, and efficiency of Amazon deliveries. Our work spans the full spectrum of foundation model development, from multimodal training using images, videos, and sensor data, to sophisticated modeling strategies that can handle diverse real-world scenarios. We build everything end to end, from data preparation to model training and evaluation to inference, along with all the tooling needed to understand and analyze model performance. Join us if you're excited about pushing the boundaries of what's possible in logistics, working with world-class scientists and engineers, and seeing your innovations deployed at unprecedented scale.
US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, WA, Seattle
The AWS Supply Chain organization is looking for a Sr. Manager of Applied Science to lead science and data teams working on innovative AI-powered supply chain solutions. As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. Are you excited about developing state-of-the-art GenAI/Agentic AI based solutions for enterprise applications? As a Sr. Manager of Applied Scientist at AWS Supply Chain, you will bring AI advancements to customer facing enterprise applications. In this role, you will drive the technical vision and strategy for your team while fostering a culture of innovation and scientific excellence. You will be leading a fast-paced, cross-disciplinary team of researchers who are leaders in the field. You will take on challenging problems, distill real requirements, and then deliver solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Key job responsibilities Building and mentoring teams of Applied Scientists, ML Engineers, and Data Scientists. Setting technical direction and research strategy aligned with business goals. Driving innovation in Supply Chains systems using AI/ML models and AI Agents. Collaborating with cross-functional teams to translate research into production. Managing project portfolios and resource allocation.
CA, ON, Toronto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities The ideal candidate will apply state of art natural language processing and computer vision research to video centric digital media and will be responsible for creating a strong environment for applied science in order to recruit, retain and develop top talent. The candidate will lead a team of applied scientist and lead the research direction, create roadmaps for forward-looking research and communicate them to senior leadership. The person will hire and develop the applied scientist and grow the science team to meet the always increasing needs of our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you!akes you! Key job responsibilities The ideal candidate will apply state of art natural language processing and computer vision research to video centric digital media and will be responsible for creating a strong environment for applied science in order to recruit, retain and develop top talent. The candidate will lead a team of applied scientist and lead the research direction, create roadmaps for forward-looking research and communicate them to senior leadership. The person will hire and develop the applied scientist and grow the science team to meet the always increasing needs of our customers.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.