Optimizing neural networks for special-purpose hardware

Curating the neural-architecture search space and taking advantage of human intuition reduces latency on real-world applications by up to 55%.

As neural networks grow in size, deploying them on-device increasingly requires special-purpose hardware that parallelizes common operations. But for maximum efficiency, it’s not enough to optimize the hardware for the networks; the networks should be optimized for the hardware, too.

Related content
The first step in training a neural network to solve a problem is usually the selection of an architecture: a specification of the number of computational nodes in the network and the connections between them. Architectural decisions are generally based on historical precedent, intuition, and plenty of trial and error.

The standard way to optimize a neural network is through neural-architecture search (NAS), where the goal is to minimize both the size of the network and the number of floating-point operations (FLOPS) it performs. But this approach doesn’t work with neural chips, which can often execute easily parallelized but higher-FLOPS tasks more rapidly than they can harder-to-parallelize but lower-FLOPS tasks.

Minimizing latency is a more complicated optimization objective than minimizing FLOPS, so in the Amazon Devices Hardware group, we’ve developed a number of strategies for adapting NAS to the problem of optimizing network architectures for Amazon’s new Neural Engine family of accelerators. Those strategies involve curating the architecture search space to, for instance, reduce the chances of getting stuck in local minima. We’ve also found that combining a little human intuition with the results of NAS for particular tasks can help us generalize to new tasks more reliably and efficiently.

In experiments involving several different machine learning tasks, we’ve found that our NAS strategies can reduce latencies by as much as 55%.

Varieties of neural-architecture search

NAS needs three things: a definition of the search space, which specifies the building blocks available to construct a network; a cost model, which is a function of the network's accuracy, latency, and memory; and an optimization algorithm. We use a performance estimator to measure latency and memory footprint, but to measure accuracy, we must train the network. This is a major bottleneck, as training a single network can take days. Sampling thousands of architectures would take thousands of GPU days, which is clearly neither practical nor environmentally sustainable.

There are three categories of NAS algorithm, which require networks to be trained different numbers of times: multishot, single-shot, and zero-shot.

Related content
A new approach that grows networks dynamically promises improvements over GANs with fixed architectures or predetermined growing strategies.

Multishot methods sample a cohort of architectures in each iteration. Each network is trained and evaluated for accuracy and performance, and the next set of architectures is sampled based on their cost. Evolutionary or reinforcement-learning-based algorithms are generally used for multishot methods.

Single-shot methods start with a large network called the supernet, which has multiple possible subgraphs. During training, the subgraphs start converging to a single, small network. Single-shot methods are designed to be trained only once, but their training takes much longer than that of a single network in multishot methods.

Zero-shot methods works like multishot methods, with the key difference that the network is never trained. As a proxy for accuracy, we use the network’s trainability score, which is computed using the network's topology, nonlinearity, and operations. Zero-shot methods are the fastest to converge, because calculating the score is computationally very cheap. The downside is that the trainability may not correlate well with model accuracy.

Search space curation

The NAS cost function can be visualized as a landscape, with each point representing a potential architecture. A cost function based on FLOPS changes monotonically with factors such as sizes or channels: that is, if you find a direction across the terrain in which the cost is going down, you can be sure that continuing in that direction will not cause the cost to go up.

However, the inclusion of accelerator-aware constraints disrupts the function by introducing more asymptotes, or points at which the cost switches from going down to going up. This results in a more complex and rocky landscape.

Related content
How to make trained systems evolve gracefully.

To address this issue, we reduced the number of options in the search space. We were exploring convolutional architectures, meaning that the inputs are decomposed into several different components, each of which has its own channel through the network. The data in each channel, in turn, is filtered in several different ways; each filter involves a different data convolution.

Previously, we would have explored the number of channels — known as the channel size — at increments of one; instead, we considered only a handful of channel sizes. We limited the options for channel sizes to certain values that were favorable for the parallelism factor of the Neural Engine. The parallelism factor is a count of operations, such as dot product, that can be performed in parallel. In some cases, we even added "depth multiplier" ratio that could be used to scale the number of channels across the entire model to the search space.

These improvements can be visualized as taking fewer, larger steps across a smoother terrain, rather than trying to navigate the rocky landscape that resulted from the inclusion of accelerator-aware performance in the cost function. During the optimization process, they resulted in a faster convergence rate because of the reduced number of options and in improved stability and reliability thanks to the monotonic nature of the curated search space.

NAS - 3x1.png
Illustration of how the cost landscape (green) changes from smooth (left) to rocky (center and right) when a cost function based on Neural Engine performance replaces one based on FLOPS. Curation (right) reduces the discrete search space (black dots) and ensures that points are far apart. The trajectory of a search algorithm (blue arrows) shows how curation (right) ensures that with each step in a search, the cost is monotonically decreasing.

One key detail in our implementation is the performance estimator. Instead of deploying an architecture on real hardware or an emulator to obtain performance metrics, we estimated them using a machine learning regression model trained on measurements of different operators or subgraphs.

At inference time, the estimator would decompose the queried architecture into subgraphs and use the regression model to estimate the performance of each. Then it would accumulate these estimates to give the model-level performance. This regressor-based design simplified our NAS framework, as it no longer required compilation, inference, or hardware. This technique enables us to test accelerators in the design phase, before we’ve developed custom compilers and hardware emulators for them.

Productizing NAS with expert-in-the-loop

Curating the search space improves convergence rate, stability, and reliability, but transferability to new use cases is not straightforward. NAS results for a detector model, for instance, may not be easy to transfer to a classification model. On the other hand, running NAS from scratch for each new dataset may not be feasible, due to time constraints. In these situations, we found that combining NAS results and human expertise was the fastest approach.

Channel reduction step.png
The initial channel reduction step (1x1 conv.) in the inverted-bottleneck (IBN) block at left is fused with the channel expansion step (KxK depth. conv.) in the fused IBN at right. This proved to be a common subgraph modification across datasets.

When we performed NAS on different datasets, we saw common patterns, such as the fusion of convolution layers with previous convolution layers, reducing the number of channels and, aligning them with the hardware parallelism factor.

In particular, fusing convolution layers in inverted bottleneck (IBN) blocks contributed most to boosting efficiency. With just these modifications, we observed latency reductions of up to 50%, whereas a fully converged NAS model would yield a slightly better 53% reduction.

In situations where running NAS from scratch is not feasible, a human expert can rely on mathematical intuition and observations of the results of NAS on similar datasets to build the required model architecture.

Results and product impact

We applied this technique to multiple products in the Amazon Devices portfolio, ranging from Echo Show and Blink home security products to the latest Astro, the in-home consumer robot.

1. Reduced detection latency by half on Echo Show

Echo Show runs a model to detect human presence and locate the detected person in a room. The original model used IBN blocks. We used accelerator-aware NAS to reduce the latency of this model by 53%.

Human-presence detection.png
Schematic representation of human-presence detection.

We performed a search for depth multipliers — that is, layers that multiply the number of channels — and for opportunities to replace IBN blocks with fused-IBN blocks. The requirement was to maintain the same mean average precision (mAP) of the original model while improving the latency. Our V3 model improved the latency by more than 53% (i.e. 2.2x faster) while keeping the mAP scores same as baseline.

Latency results for the original model and three models found through NAS.

Fused-IBN search

Depth multiplier search

Latency reduction (%)

Baseline

No

No

Baseline

V1

No

Yes

14%

V2

Yes

No

35%

V3

Yes

Yes

53%

After performing NAS, we found that not every IBN fusion improves latency and accuracy. The later layers are larger, and replacing them with fused layers hurt performance. For the layers where fusion was selected, the FLOPs, as expected, increased, but the latency did not.

2. Model fitting within the tight memory budget of the Blink Floodlight Camera

Blink cameras use a classification model for security assistance. Our goal was to fit the model parameters and peak activation memory within a tight memory budget. In this case, we combined NAS techniques with an expert-in-the-loop to provide fine-tuning. The NAS result on the classification dataset provided intuition on what operator/subgraph changes could extract benefits from the accelerator design.

Classification.png
Schematic representation of the classification model output.

The expert recommendations were to replace the depth-wise convolutions with standard convolutions and reduce the channels by making them even across the model, preferably by a multiple of the parallelism factor. With these changes, model developers were able to reduce both the model size and the intermediate memory usage by 47% and fit the model within the required budget.

3. Fast semantic segmentation for robotics

In the context of robotics, semantic segmentation is used to understand the objects and scenes the robot is interacting with. For example, it can enable the robot to identify chairs, tables, or other objects in the environment, allowing it to navigate and interact with its surroundings more effectively. Our goal for this model was to reduce latency by half. Our starting point was a semantic-segmentation model that was optimized to run on a CPU.

Semantic segmentation.png
Left: original image of a room at night; center: semantic-segmentation image; right: semantic segmentation overlaid on original image.

For this model, we searched for different channel sizes, fusion, and also output and input dimensions. We used the multishot method with the evolutionary search algorithm. NAS gave us multiple candidates with different performances. The best candidate was able to reduce the latency by half.

Latency improvement for different architectures found through NAS.

Latency reduction (%)

Original

Baseline

Model A

27%

Model B

37%

Model C

38%

Model D

41%

Model E

51%

4. User privacy with on-device inference

Amazon's Neural Engine supports large-model inference on-device, so we can process microphone and video feeds without sending data to the cloud. For example, the Amazon Neural Engine has enabled Alexa to perform automatic speech recognition on-device. On-device processing also provides a better user experience because the inference pipeline is not affected by intermittent connection issues. In our NAS work, we discovered that even larger, more accurate models can now fit on-device with no hit on latency.

Making edge AI sustainable

We mentioned earlier that multishot NAS with full training can take up to 2,000 GPU-days. However, with some of the techniques described in this blog, we were able to create efficient architectures in a substantially shorter amount of time, making NAS much more scalable and sustainable. But our sustainability efforts don't end there.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

Because of its parallelism and mixed-precision features, the Neural Engine is more power efficient than a generic CPU. For a million average users, the difference is on order of millions of kilowatt-hours per year, equivalent to 200 gasoline-powered passenger vehicles per year or the energy consumption of a hundred average US households.

When we optimize models through NAS, we increase the device's capability to run more neural-network models simultaneously. This allows us to use smaller application processors and, in some cases, fewer of them. By reducing the hardware footprint in this way, we are further reducing the carbon footprint of our devices.

Future work

We have identified that curation requires an expert who understands the hardware design well. This may not scale to future generations of more complex hardware. We have also identified that in situations where time is tight, having an expert in the loop is still faster than running NAS from scratch. Because of this, we are continuing to investigate how NAS algorithms with accelerator awareness can handle large search spaces. We are also working on improving the search algorithm’s efficiency and effectiveness by exploring how the three categories of algorithms can be combined. We also plan to explore model optimization by introducing sparsity through pruning and clustering. Stay tuned!

Acknowledgements: Manasa Manohara, Lingchuan Meng, Rahul Bakshi, Varada Gopalakrishnan, Lindo St. Angel

Research areas

Related content

RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Data Scientist you will investigate business problems using data, invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include named entity recognition, product substitutes, pricing optimization, agentic AI, and large language models. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Perform data analysis and build data pipelines to drive business decisions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services