Optimizing neural networks for special-purpose hardware

Curating the neural-architecture search space and taking advantage of human intuition reduces latency on real-world applications by up to 55%.

As neural networks grow in size, deploying them on-device increasingly requires special-purpose hardware that parallelizes common operations. But for maximum efficiency, it’s not enough to optimize the hardware for the networks; the networks should be optimized for the hardware, too.

Related content
The first step in training a neural network to solve a problem is usually the selection of an architecture: a specification of the number of computational nodes in the network and the connections between them. Architectural decisions are generally based on historical precedent, intuition, and plenty of trial and error.

The standard way to optimize a neural network is through neural-architecture search (NAS), where the goal is to minimize both the size of the network and the number of floating-point operations (FLOPS) it performs. But this approach doesn’t work with neural chips, which can often execute easily parallelized but higher-FLOPS tasks more rapidly than they can harder-to-parallelize but lower-FLOPS tasks.

Minimizing latency is a more complicated optimization objective than minimizing FLOPS, so in the Amazon Devices Hardware group, we’ve developed a number of strategies for adapting NAS to the problem of optimizing network architectures for Amazon’s new Neural Engine family of accelerators. Those strategies involve curating the architecture search space to, for instance, reduce the chances of getting stuck in local minima. We’ve also found that combining a little human intuition with the results of NAS for particular tasks can help us generalize to new tasks more reliably and efficiently.

In experiments involving several different machine learning tasks, we’ve found that our NAS strategies can reduce latencies by as much as 55%.

Varieties of neural-architecture search

NAS needs three things: a definition of the search space, which specifies the building blocks available to construct a network; a cost model, which is a function of the network's accuracy, latency, and memory; and an optimization algorithm. We use a performance estimator to measure latency and memory footprint, but to measure accuracy, we must train the network. This is a major bottleneck, as training a single network can take days. Sampling thousands of architectures would take thousands of GPU days, which is clearly neither practical nor environmentally sustainable.

There are three categories of NAS algorithm, which require networks to be trained different numbers of times: multishot, single-shot, and zero-shot.

Related content
A new approach that grows networks dynamically promises improvements over GANs with fixed architectures or predetermined growing strategies.

Multishot methods sample a cohort of architectures in each iteration. Each network is trained and evaluated for accuracy and performance, and the next set of architectures is sampled based on their cost. Evolutionary or reinforcement-learning-based algorithms are generally used for multishot methods.

Single-shot methods start with a large network called the supernet, which has multiple possible subgraphs. During training, the subgraphs start converging to a single, small network. Single-shot methods are designed to be trained only once, but their training takes much longer than that of a single network in multishot methods.

Zero-shot methods works like multishot methods, with the key difference that the network is never trained. As a proxy for accuracy, we use the network’s trainability score, which is computed using the network's topology, nonlinearity, and operations. Zero-shot methods are the fastest to converge, because calculating the score is computationally very cheap. The downside is that the trainability may not correlate well with model accuracy.

Search space curation

The NAS cost function can be visualized as a landscape, with each point representing a potential architecture. A cost function based on FLOPS changes monotonically with factors such as sizes or channels: that is, if you find a direction across the terrain in which the cost is going down, you can be sure that continuing in that direction will not cause the cost to go up.

However, the inclusion of accelerator-aware constraints disrupts the function by introducing more asymptotes, or points at which the cost switches from going down to going up. This results in a more complex and rocky landscape.

Related content
How to make trained systems evolve gracefully.

To address this issue, we reduced the number of options in the search space. We were exploring convolutional architectures, meaning that the inputs are decomposed into several different components, each of which has its own channel through the network. The data in each channel, in turn, is filtered in several different ways; each filter involves a different data convolution.

Previously, we would have explored the number of channels — known as the channel size — at increments of one; instead, we considered only a handful of channel sizes. We limited the options for channel sizes to certain values that were favorable for the parallelism factor of the Neural Engine. The parallelism factor is a count of operations, such as dot product, that can be performed in parallel. In some cases, we even added "depth multiplier" ratio that could be used to scale the number of channels across the entire model to the search space.

These improvements can be visualized as taking fewer, larger steps across a smoother terrain, rather than trying to navigate the rocky landscape that resulted from the inclusion of accelerator-aware performance in the cost function. During the optimization process, they resulted in a faster convergence rate because of the reduced number of options and in improved stability and reliability thanks to the monotonic nature of the curated search space.

NAS - 3x1.png
Illustration of how the cost landscape (green) changes from smooth (left) to rocky (center and right) when a cost function based on Neural Engine performance replaces one based on FLOPS. Curation (right) reduces the discrete search space (black dots) and ensures that points are far apart. The trajectory of a search algorithm (blue arrows) shows how curation (right) ensures that with each step in a search, the cost is monotonically decreasing.

One key detail in our implementation is the performance estimator. Instead of deploying an architecture on real hardware or an emulator to obtain performance metrics, we estimated them using a machine learning regression model trained on measurements of different operators or subgraphs.

At inference time, the estimator would decompose the queried architecture into subgraphs and use the regression model to estimate the performance of each. Then it would accumulate these estimates to give the model-level performance. This regressor-based design simplified our NAS framework, as it no longer required compilation, inference, or hardware. This technique enables us to test accelerators in the design phase, before we’ve developed custom compilers and hardware emulators for them.

Productizing NAS with expert-in-the-loop

Curating the search space improves convergence rate, stability, and reliability, but transferability to new use cases is not straightforward. NAS results for a detector model, for instance, may not be easy to transfer to a classification model. On the other hand, running NAS from scratch for each new dataset may not be feasible, due to time constraints. In these situations, we found that combining NAS results and human expertise was the fastest approach.

Channel reduction step.png
The initial channel reduction step (1x1 conv.) in the inverted-bottleneck (IBN) block at left is fused with the channel expansion step (KxK depth. conv.) in the fused IBN at right. This proved to be a common subgraph modification across datasets.

When we performed NAS on different datasets, we saw common patterns, such as the fusion of convolution layers with previous convolution layers, reducing the number of channels and, aligning them with the hardware parallelism factor.

In particular, fusing convolution layers in inverted bottleneck (IBN) blocks contributed most to boosting efficiency. With just these modifications, we observed latency reductions of up to 50%, whereas a fully converged NAS model would yield a slightly better 53% reduction.

In situations where running NAS from scratch is not feasible, a human expert can rely on mathematical intuition and observations of the results of NAS on similar datasets to build the required model architecture.

Results and product impact

We applied this technique to multiple products in the Amazon Devices portfolio, ranging from Echo Show and Blink home security products to the latest Astro, the in-home consumer robot.

1. Reduced detection latency by half on Echo Show

Echo Show runs a model to detect human presence and locate the detected person in a room. The original model used IBN blocks. We used accelerator-aware NAS to reduce the latency of this model by 53%.

Human-presence detection.png
Schematic representation of human-presence detection.

We performed a search for depth multipliers — that is, layers that multiply the number of channels — and for opportunities to replace IBN blocks with fused-IBN blocks. The requirement was to maintain the same mean average precision (mAP) of the original model while improving the latency. Our V3 model improved the latency by more than 53% (i.e. 2.2x faster) while keeping the mAP scores same as baseline.

Latency results for the original model and three models found through NAS.

Fused-IBN search

Depth multiplier search

Latency reduction (%)

Baseline

No

No

Baseline

V1

No

Yes

14%

V2

Yes

No

35%

V3

Yes

Yes

53%

After performing NAS, we found that not every IBN fusion improves latency and accuracy. The later layers are larger, and replacing them with fused layers hurt performance. For the layers where fusion was selected, the FLOPs, as expected, increased, but the latency did not.

2. Model fitting within the tight memory budget of the Blink Floodlight Camera

Blink cameras use a classification model for security assistance. Our goal was to fit the model parameters and peak activation memory within a tight memory budget. In this case, we combined NAS techniques with an expert-in-the-loop to provide fine-tuning. The NAS result on the classification dataset provided intuition on what operator/subgraph changes could extract benefits from the accelerator design.

Classification.png
Schematic representation of the classification model output.

The expert recommendations were to replace the depth-wise convolutions with standard convolutions and reduce the channels by making them even across the model, preferably by a multiple of the parallelism factor. With these changes, model developers were able to reduce both the model size and the intermediate memory usage by 47% and fit the model within the required budget.

3. Fast semantic segmentation for robotics

In the context of robotics, semantic segmentation is used to understand the objects and scenes the robot is interacting with. For example, it can enable the robot to identify chairs, tables, or other objects in the environment, allowing it to navigate and interact with its surroundings more effectively. Our goal for this model was to reduce latency by half. Our starting point was a semantic-segmentation model that was optimized to run on a CPU.

Semantic segmentation.png
Left: original image of a room at night; center: semantic-segmentation image; right: semantic segmentation overlaid on original image.

For this model, we searched for different channel sizes, fusion, and also output and input dimensions. We used the multishot method with the evolutionary search algorithm. NAS gave us multiple candidates with different performances. The best candidate was able to reduce the latency by half.

Latency improvement for different architectures found through NAS.

Latency reduction (%)

Original

Baseline

Model A

27%

Model B

37%

Model C

38%

Model D

41%

Model E

51%

4. User privacy with on-device inference

Amazon's Neural Engine supports large-model inference on-device, so we can process microphone and video feeds without sending data to the cloud. For example, the Amazon Neural Engine has enabled Alexa to perform automatic speech recognition on-device. On-device processing also provides a better user experience because the inference pipeline is not affected by intermittent connection issues. In our NAS work, we discovered that even larger, more accurate models can now fit on-device with no hit on latency.

Making edge AI sustainable

We mentioned earlier that multishot NAS with full training can take up to 2,000 GPU-days. However, with some of the techniques described in this blog, we were able to create efficient architectures in a substantially shorter amount of time, making NAS much more scalable and sustainable. But our sustainability efforts don't end there.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

Because of its parallelism and mixed-precision features, the Neural Engine is more power efficient than a generic CPU. For a million average users, the difference is on order of millions of kilowatt-hours per year, equivalent to 200 gasoline-powered passenger vehicles per year or the energy consumption of a hundred average US households.

When we optimize models through NAS, we increase the device's capability to run more neural-network models simultaneously. This allows us to use smaller application processors and, in some cases, fewer of them. By reducing the hardware footprint in this way, we are further reducing the carbon footprint of our devices.

Future work

We have identified that curation requires an expert who understands the hardware design well. This may not scale to future generations of more complex hardware. We have also identified that in situations where time is tight, having an expert in the loop is still faster than running NAS from scratch. Because of this, we are continuing to investigate how NAS algorithms with accelerator awareness can handle large search spaces. We are also working on improving the search algorithm’s efficiency and effectiveness by exploring how the three categories of algorithms can be combined. We also plan to explore model optimization by introducing sparsity through pruning and clustering. Stay tuned!

Acknowledgements: Manasa Manohara, Lingchuan Meng, Rahul Bakshi, Varada Gopalakrishnan, Lindo St. Angel

Research areas

Related content

US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
IN, KA, Bengaluru
Amazon is looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. As a Speech and Language Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in the area of speech and audio understanding technologies including ASR.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.