Optimizing neural networks for special-purpose hardware

Curating the neural-architecture search space and taking advantage of human intuition reduces latency on real-world applications by up to 55%.

As neural networks grow in size, deploying them on-device increasingly requires special-purpose hardware that parallelizes common operations. But for maximum efficiency, it’s not enough to optimize the hardware for the networks; the networks should be optimized for the hardware, too.

Related content
The first step in training a neural network to solve a problem is usually the selection of an architecture: a specification of the number of computational nodes in the network and the connections between them. Architectural decisions are generally based on historical precedent, intuition, and plenty of trial and error.

The standard way to optimize a neural network is through neural-architecture search (NAS), where the goal is to minimize both the size of the network and the number of floating-point operations (FLOPS) it performs. But this approach doesn’t work with neural chips, which can often execute easily parallelized but higher-FLOPS tasks more rapidly than they can harder-to-parallelize but lower-FLOPS tasks.

Minimizing latency is a more complicated optimization objective than minimizing FLOPS, so in the Amazon Devices Hardware group, we’ve developed a number of strategies for adapting NAS to the problem of optimizing network architectures for Amazon’s new Neural Engine family of accelerators. Those strategies involve curating the architecture search space to, for instance, reduce the chances of getting stuck in local minima. We’ve also found that combining a little human intuition with the results of NAS for particular tasks can help us generalize to new tasks more reliably and efficiently.

In experiments involving several different machine learning tasks, we’ve found that our NAS strategies can reduce latencies by as much as 55%.

Varieties of neural-architecture search

NAS needs three things: a definition of the search space, which specifies the building blocks available to construct a network; a cost model, which is a function of the network's accuracy, latency, and memory; and an optimization algorithm. We use a performance estimator to measure latency and memory footprint, but to measure accuracy, we must train the network. This is a major bottleneck, as training a single network can take days. Sampling thousands of architectures would take thousands of GPU days, which is clearly neither practical nor environmentally sustainable.

There are three categories of NAS algorithm, which require networks to be trained different numbers of times: multishot, single-shot, and zero-shot.

Related content
A new approach that grows networks dynamically promises improvements over GANs with fixed architectures or predetermined growing strategies.

Multishot methods sample a cohort of architectures in each iteration. Each network is trained and evaluated for accuracy and performance, and the next set of architectures is sampled based on their cost. Evolutionary or reinforcement-learning-based algorithms are generally used for multishot methods.

Single-shot methods start with a large network called the supernet, which has multiple possible subgraphs. During training, the subgraphs start converging to a single, small network. Single-shot methods are designed to be trained only once, but their training takes much longer than that of a single network in multishot methods.

Zero-shot methods works like multishot methods, with the key difference that the network is never trained. As a proxy for accuracy, we use the network’s trainability score, which is computed using the network's topology, nonlinearity, and operations. Zero-shot methods are the fastest to converge, because calculating the score is computationally very cheap. The downside is that the trainability may not correlate well with model accuracy.

Search space curation

The NAS cost function can be visualized as a landscape, with each point representing a potential architecture. A cost function based on FLOPS changes monotonically with factors such as sizes or channels: that is, if you find a direction across the terrain in which the cost is going down, you can be sure that continuing in that direction will not cause the cost to go up.

However, the inclusion of accelerator-aware constraints disrupts the function by introducing more asymptotes, or points at which the cost switches from going down to going up. This results in a more complex and rocky landscape.

Related content
How to make trained systems evolve gracefully.

To address this issue, we reduced the number of options in the search space. We were exploring convolutional architectures, meaning that the inputs are decomposed into several different components, each of which has its own channel through the network. The data in each channel, in turn, is filtered in several different ways; each filter involves a different data convolution.

Previously, we would have explored the number of channels — known as the channel size — at increments of one; instead, we considered only a handful of channel sizes. We limited the options for channel sizes to certain values that were favorable for the parallelism factor of the Neural Engine. The parallelism factor is a count of operations, such as dot product, that can be performed in parallel. In some cases, we even added "depth multiplier" ratio that could be used to scale the number of channels across the entire model to the search space.

These improvements can be visualized as taking fewer, larger steps across a smoother terrain, rather than trying to navigate the rocky landscape that resulted from the inclusion of accelerator-aware performance in the cost function. During the optimization process, they resulted in a faster convergence rate because of the reduced number of options and in improved stability and reliability thanks to the monotonic nature of the curated search space.

NAS - 3x1.png
Illustration of how the cost landscape (green) changes from smooth (left) to rocky (center and right) when a cost function based on Neural Engine performance replaces one based on FLOPS. Curation (right) reduces the discrete search space (black dots) and ensures that points are far apart. The trajectory of a search algorithm (blue arrows) shows how curation (right) ensures that with each step in a search, the cost is monotonically decreasing.

One key detail in our implementation is the performance estimator. Instead of deploying an architecture on real hardware or an emulator to obtain performance metrics, we estimated them using a machine learning regression model trained on measurements of different operators or subgraphs.

At inference time, the estimator would decompose the queried architecture into subgraphs and use the regression model to estimate the performance of each. Then it would accumulate these estimates to give the model-level performance. This regressor-based design simplified our NAS framework, as it no longer required compilation, inference, or hardware. This technique enables us to test accelerators in the design phase, before we’ve developed custom compilers and hardware emulators for them.

Productizing NAS with expert-in-the-loop

Curating the search space improves convergence rate, stability, and reliability, but transferability to new use cases is not straightforward. NAS results for a detector model, for instance, may not be easy to transfer to a classification model. On the other hand, running NAS from scratch for each new dataset may not be feasible, due to time constraints. In these situations, we found that combining NAS results and human expertise was the fastest approach.

Channel reduction step.png
The initial channel reduction step (1x1 conv.) in the inverted-bottleneck (IBN) block at left is fused with the channel expansion step (KxK depth. conv.) in the fused IBN at right. This proved to be a common subgraph modification across datasets.

When we performed NAS on different datasets, we saw common patterns, such as the fusion of convolution layers with previous convolution layers, reducing the number of channels and, aligning them with the hardware parallelism factor.

In particular, fusing convolution layers in inverted bottleneck (IBN) blocks contributed most to boosting efficiency. With just these modifications, we observed latency reductions of up to 50%, whereas a fully converged NAS model would yield a slightly better 53% reduction.

In situations where running NAS from scratch is not feasible, a human expert can rely on mathematical intuition and observations of the results of NAS on similar datasets to build the required model architecture.

Results and product impact

We applied this technique to multiple products in the Amazon Devices portfolio, ranging from Echo Show and Blink home security products to the latest Astro, the in-home consumer robot.

1. Reduced detection latency by half on Echo Show

Echo Show runs a model to detect human presence and locate the detected person in a room. The original model used IBN blocks. We used accelerator-aware NAS to reduce the latency of this model by 53%.

Human-presence detection.png
Schematic representation of human-presence detection.

We performed a search for depth multipliers — that is, layers that multiply the number of channels — and for opportunities to replace IBN blocks with fused-IBN blocks. The requirement was to maintain the same mean average precision (mAP) of the original model while improving the latency. Our V3 model improved the latency by more than 53% (i.e. 2.2x faster) while keeping the mAP scores same as baseline.

Latency results for the original model and three models found through NAS.

Fused-IBN search

Depth multiplier search

Latency reduction (%)

Baseline

No

No

Baseline

V1

No

Yes

14%

V2

Yes

No

35%

V3

Yes

Yes

53%

After performing NAS, we found that not every IBN fusion improves latency and accuracy. The later layers are larger, and replacing them with fused layers hurt performance. For the layers where fusion was selected, the FLOPs, as expected, increased, but the latency did not.

2. Model fitting within the tight memory budget of the Blink Floodlight Camera

Blink cameras use a classification model for security assistance. Our goal was to fit the model parameters and peak activation memory within a tight memory budget. In this case, we combined NAS techniques with an expert-in-the-loop to provide fine-tuning. The NAS result on the classification dataset provided intuition on what operator/subgraph changes could extract benefits from the accelerator design.

Classification.png
Schematic representation of the classification model output.

The expert recommendations were to replace the depth-wise convolutions with standard convolutions and reduce the channels by making them even across the model, preferably by a multiple of the parallelism factor. With these changes, model developers were able to reduce both the model size and the intermediate memory usage by 47% and fit the model within the required budget.

3. Fast semantic segmentation for robotics

In the context of robotics, semantic segmentation is used to understand the objects and scenes the robot is interacting with. For example, it can enable the robot to identify chairs, tables, or other objects in the environment, allowing it to navigate and interact with its surroundings more effectively. Our goal for this model was to reduce latency by half. Our starting point was a semantic-segmentation model that was optimized to run on a CPU.

Semantic segmentation.png
Left: original image of a room at night; center: semantic-segmentation image; right: semantic segmentation overlaid on original image.

For this model, we searched for different channel sizes, fusion, and also output and input dimensions. We used the multishot method with the evolutionary search algorithm. NAS gave us multiple candidates with different performances. The best candidate was able to reduce the latency by half.

Latency improvement for different architectures found through NAS.

Latency reduction (%)

Original

Baseline

Model A

27%

Model B

37%

Model C

38%

Model D

41%

Model E

51%

4. User privacy with on-device inference

Amazon's Neural Engine supports large-model inference on-device, so we can process microphone and video feeds without sending data to the cloud. For example, the Amazon Neural Engine has enabled Alexa to perform automatic speech recognition on-device. On-device processing also provides a better user experience because the inference pipeline is not affected by intermittent connection issues. In our NAS work, we discovered that even larger, more accurate models can now fit on-device with no hit on latency.

Making edge AI sustainable

We mentioned earlier that multishot NAS with full training can take up to 2,000 GPU-days. However, with some of the techniques described in this blog, we were able to create efficient architectures in a substantially shorter amount of time, making NAS much more scalable and sustainable. But our sustainability efforts don't end there.

Related content
Innovative training methods and model compression techniques combine with clever engineering to keep speech processing local.

Because of its parallelism and mixed-precision features, the Neural Engine is more power efficient than a generic CPU. For a million average users, the difference is on order of millions of kilowatt-hours per year, equivalent to 200 gasoline-powered passenger vehicles per year or the energy consumption of a hundred average US households.

When we optimize models through NAS, we increase the device's capability to run more neural-network models simultaneously. This allows us to use smaller application processors and, in some cases, fewer of them. By reducing the hardware footprint in this way, we are further reducing the carbon footprint of our devices.

Future work

We have identified that curation requires an expert who understands the hardware design well. This may not scale to future generations of more complex hardware. We have also identified that in situations where time is tight, having an expert in the loop is still faster than running NAS from scratch. Because of this, we are continuing to investigate how NAS algorithms with accelerator awareness can handle large search spaces. We are also working on improving the search algorithm’s efficiency and effectiveness by exploring how the three categories of algorithms can be combined. We also plan to explore model optimization by introducing sparsity through pruning and clustering. Stay tuned!

Acknowledgements: Manasa Manohara, Lingchuan Meng, Rahul Bakshi, Varada Gopalakrishnan, Lindo St. Angel

Research areas

Related content

US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.