Paper on graph database schemata wins best-industry-paper award

SIGMOD paper by Amazon researchers and collaborators presents flexible data definition language that enables rapid development of complex graph databases.

Where a standard relational database stores data in linked tables, graph databases store data in graphs, where the edges represent relationships between data items. Graph databases are popular with customers for use cases like single-customer view, fraud detection, recommendations, and security, where you need to create relationships between data and quickly navigate these connections. Amazon Neptune is AWS’s graph database service, which is designed for scalability and availability and allows our customers to query billions of relationships in milliseconds.

Related content
Tim Kraska, who joined Amazon this summer to build the new Learned Systems research group, explains the power of “instance optimization”.

In this blog post, we present joint work on a schema language for graph databases, which was carried out under the umbrella of the Linked Data Benchmarking Council (LDBC), a nonprofit organization that brings together leading organizations and academics from the graph database space. A schema is a way of defining the structure of a database — the data types permitted, the possible relationships between them, and the logical constraints upon them (such as uniqueness of entities).

This work is important to customers because it will allow them to describe and define the structures of their graphs in a way that is portable across vendors and makes building graph applications faster. We presented our work in a paper that won the best-industry-paper award at this year’s meeting of the Association for Computing Machinery's Special Interest Group on Management of Data (SIGMOD).

Labeled-property graphs

The labeled-property-graph (LPG) data model is a prominent choice for building graph applications. LPGs build upon three primitives to model graph-shaped data: nodes, edges, and properties. The figure below represents an excerpt from a labeled property graph in a financial-fraud scenario. Nodes are represented as green circles, edges are represented as directed arrows connecting nodes, and properties are enclosed in orange boxes.

The node with identifier 1, for instance, is labeled Customer and carries two properties, specifying the name with string value “Jane Doe” and a customerId. Both node 1 and 2 two are connected to node 3, which represents a shared account with a fixed iban number; the two edges are marked with the label Owns, which specifies the nature of the relationship. Just like vertices, edges can carry properties. In this example, the property since specifies 2021-03-05 as the start date of ownership.

Graph schemata 1.png
Sample graph representing two customers that own a shared account.

Relational vs. graph schema

 One property that differentiates graph databases from, for instance, relational databases — where the schema needs to be defined upfront and is often hard to change — is that graph databases do not require explicit schema definitions. To illustrate the difference, compare the graph data model from the figure above to a comparable relational-database schema, shown below, with the primary-key attributes underlined.

Relational database.png
A possible relational-database model for the scenario above.

Schema-level information of the relational model — tables and attribute names — are represented as part of the data itself in graphs. Said otherwise, by inserting or changing graph elements such as node labels, edge labels, and property names, one can extend or change the schema implicitly, without having to run (oftentimes tedious) schema manipulations such as ALTER TABLE commands.

Related content
Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

As an example, in a graph database one can simply add an edge with the previously unseen label Knows to connect the two nodes representing Jane Doe and John Doe or introduce nodes with new labels (such as FinancialTransaction) at any time. Such extensions would require table manipulations in our relational sample schema.

The absence of an explicit schema is a key differentiator that lowers the burden of getting started with data modeling and application building in graphs: following a pay-as-you-go paradigm, graph application developers who build new applications can start out with a small portion of the data and insert new node types, properties, and interconnecting edges as their applications evolve, without having to maintain explicit schemata.

Schemata evolution

While this contributes to the initial velocity of building graph applications, what we often see is that — throughout the life cycle of graph applications — it becomes desirable to shift from implicit to explicit schemata. Once the database has been seeded with an initial (and typically yet-to-be-refined) version of the graph data, there is a demand for what we call flexible-schema support. 

Schema evolution.png
Evolution of schema requirements throughout the graph application life cycle.

In that stage, the schema primarily plays a descriptive role: knowing the most important node/edge labels and their properties tells application developers what to expect in the data and guides them in writing queries. As the application life cycle progresses, the graph data model stabilizes, and developers may benefit from a more rigorous, prescriptive schema approach that strongly asserts shapes and logical invariants in the graph.

PG-Schema

Motivated by these requirements, our SIGMOD publication proposes a data definition language (DDL) called PG-Schema, which aims to expose the full breadth of schema flexibility to users. The figure below shows a visual representation of such a graph schema, as well as the corresponding syntactical representation, as it could be provided by a data architect or application developer to formally define the schema of our fraud graph example.

Graph database schema.png
Schema for the graph data from the graph database above (left: graphical representation; right: corresponding data definition language).

In this example, the overall schema is composed of the six elements enclosed in the top-level GRAPH TYPE definition:

  • The first three lines of the GRAPH TYPE definition introduce so-called node types: person, customer, and account; they describe structural constraints on the nodes in the graph data. The customer node type, for instance, tells us that there can be nodes with label Customer, which carry a property customerId and are derived from a more general person node type. Concretely, this means that nodes with the label Customer inherit the properties name and birthDate defined in node type person. Note that properties also specify a data type (such as string, date, or numerical values) and may be marked as optional.
  • Edge types build upon node types and specify the type and structure of edges that connect nodes. Our example defines a single edge type connecting nodes of node type customer with nodes of type account. Informally speaking, this tells us that Customer-labeled nodes in our data graph can be connected to Account-labeled nodes via an edge labeled Owns, which is annotated with a property since, pointing to a date value.
  • The last two lines specify additional constraints that go beyond the mere structure of our graph. The KEY constraint demands that the value of the iban property uniquely identifies an account, i.e., no two Account-labeled nodes can share the same IBAN number. This can be thought of as the equivalent of primary keys in relational databases, which enforce the uniqueness of one or more attributes within the scope of a given table. The second constraint enforces that every account has at least one owner, which is reminiscent of a foreign-key constraint in relational databases.

Also note the keyword STRICT in the graph type definition: it enforces that all elements in the graph obey one of the types defined in the graph type body, and that all constraints are satisfied. Concretely, it implies that our graph can contain onlyPerson-, Customer-, and Account-labeled nodes with the respective sets of properties that the only possible edge type is between customers and accounts with label Owns and that the key and foreign constraints must be satisfied. Hence, the STRICT keyword can be understood as a mechanism to implement the schema-first paradigm, as it is maximally prescriptive and strongly constrains the graph structure.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

To account for flexible- and partial-schema use cases, PG-Schema offers a LOOSE keyword as an alternative to STRICT, which comes with a more relaxed interpretation: graph types that are defined as LOOSE allow for node and edge types that are not explicitly listed in the graph type definition. Mechanisms similar to STRICT vs. LOOSE keywords at graph type level can be found at different levels of the language.

For instance, keywords such as OPEN (vs. the implicit default, CLOSED) can be used to either partially or fully specify the set of properties that can be carried by vertices with a given vertex label (e.g., expressing that a Person-labeled node must have a name but may have an arbitrary set of other (unknown) properties, without requiring enumeration of the entire set). The flexibility arising from these mechanisms makes it easy to define partial schemata that can be adjusted and refined incrementally, to capture the schema evolution requirements sketched above.

Not only does PG-Schema provide a concrete proposal for a graph schema and constraint language, but it also aims to raise awareness of the importance of a standardized approach to graph schemata. The concepts and ideas in the paper were codeveloped by major companies and academics in the graph space, and there are ongoing initiatives within the LDBC that aim toward a standardization of these concepts.

In particular, the LDBC has close ties with the ISO committee that is currently in the process of standardizing a new graph query language (GQL). As some GQL ISO committee members are coauthors of the PG-Schema paper, there has been a continuous bilateral exchange, and it is anticipated that future versions of the GQL standard will include a rich DDL, which may pick up concepts and ideas presented in the paper.

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
Are you fascinated by the power of Large Language Models (LLM) and applying Generative AI to solve complex challenges within one of Amazon's most significant businesses? Amazon Selection and Catalog Systems (ASCS) builds the systems that host and run the world's largest e-Commerce products catalog, it powers the online buying experience for customers worldwide so they can find, discover and buy anything they want. Amazon's customers rely on the completeness, consistency and correctness of Amazon's product data to make well-informed purchase decisions. We develop LLM applications that make Catalog the best-in-class source of product information for all products worldwide. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries) and multitude of input sources (millions of sellers contributing product data with different quality). We are seeking a passionate, talented, and inventive individual to join the Catalog AI team and help build industry-leading technologies that customers will love. You will apply machine learning and large language model techniques, such as fine-tuning, reinforcement learning, and prompt optimization, to solve real customer problems. You will work closely with scientists and engineers to experiment with new methods, run large-scale evaluations, and bring research ideas into production. Key job responsibilities * Design and implement LLM-based solutions to improve catalog data quality and completeness * Conduct experiments and A/B tests to validate model improvements and measure business impact * Optimize large language models for quality and cost on catalog-specific tasks * Collaborate with engineering teams to deploy models at scale serving billions of products