Paper on graph database schemata wins best-industry-paper award

SIGMOD paper by Amazon researchers and collaborators presents flexible data definition language that enables rapid development of complex graph databases.

Where a standard relational database stores data in linked tables, graph databases store data in graphs, where the edges represent relationships between data items. Graph databases are popular with customers for use cases like single-customer view, fraud detection, recommendations, and security, where you need to create relationships between data and quickly navigate these connections. Amazon Neptune is AWS’s graph database service, which is designed for scalability and availability and allows our customers to query billions of relationships in milliseconds.

Related content
Tim Kraska, who joined Amazon this summer to build the new Learned Systems research group, explains the power of “instance optimization”.

In this blog post, we present joint work on a schema language for graph databases, which was carried out under the umbrella of the Linked Data Benchmarking Council (LDBC), a nonprofit organization that brings together leading organizations and academics from the graph database space. A schema is a way of defining the structure of a database — the data types permitted, the possible relationships between them, and the logical constraints upon them (such as uniqueness of entities).

This work is important to customers because it will allow them to describe and define the structures of their graphs in a way that is portable across vendors and makes building graph applications faster. We presented our work in a paper that won the best-industry-paper award at this year’s meeting of the Association for Computing Machinery's Special Interest Group on Management of Data (SIGMOD).

Labeled-property graphs

The labeled-property-graph (LPG) data model is a prominent choice for building graph applications. LPGs build upon three primitives to model graph-shaped data: nodes, edges, and properties. The figure below represents an excerpt from a labeled property graph in a financial-fraud scenario. Nodes are represented as green circles, edges are represented as directed arrows connecting nodes, and properties are enclosed in orange boxes.

The node with identifier 1, for instance, is labeled Customer and carries two properties, specifying the name with string value “Jane Doe” and a customerId. Both node 1 and 2 two are connected to node 3, which represents a shared account with a fixed iban number; the two edges are marked with the label Owns, which specifies the nature of the relationship. Just like vertices, edges can carry properties. In this example, the property since specifies 2021-03-05 as the start date of ownership.

Graph schemata 1.png
Sample graph representing two customers that own a shared account.

Relational vs. graph schema

 One property that differentiates graph databases from, for instance, relational databases — where the schema needs to be defined upfront and is often hard to change — is that graph databases do not require explicit schema definitions. To illustrate the difference, compare the graph data model from the figure above to a comparable relational-database schema, shown below, with the primary-key attributes underlined.

Relational database.png
A possible relational-database model for the scenario above.

Schema-level information of the relational model — tables and attribute names — are represented as part of the data itself in graphs. Said otherwise, by inserting or changing graph elements such as node labels, edge labels, and property names, one can extend or change the schema implicitly, without having to run (oftentimes tedious) schema manipulations such as ALTER TABLE commands.

Related content
Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

As an example, in a graph database one can simply add an edge with the previously unseen label Knows to connect the two nodes representing Jane Doe and John Doe or introduce nodes with new labels (such as FinancialTransaction) at any time. Such extensions would require table manipulations in our relational sample schema.

The absence of an explicit schema is a key differentiator that lowers the burden of getting started with data modeling and application building in graphs: following a pay-as-you-go paradigm, graph application developers who build new applications can start out with a small portion of the data and insert new node types, properties, and interconnecting edges as their applications evolve, without having to maintain explicit schemata.

Schemata evolution

While this contributes to the initial velocity of building graph applications, what we often see is that — throughout the life cycle of graph applications — it becomes desirable to shift from implicit to explicit schemata. Once the database has been seeded with an initial (and typically yet-to-be-refined) version of the graph data, there is a demand for what we call flexible-schema support. 

Schema evolution.png
Evolution of schema requirements throughout the graph application life cycle.

In that stage, the schema primarily plays a descriptive role: knowing the most important node/edge labels and their properties tells application developers what to expect in the data and guides them in writing queries. As the application life cycle progresses, the graph data model stabilizes, and developers may benefit from a more rigorous, prescriptive schema approach that strongly asserts shapes and logical invariants in the graph.

PG-Schema

Motivated by these requirements, our SIGMOD publication proposes a data definition language (DDL) called PG-Schema, which aims to expose the full breadth of schema flexibility to users. The figure below shows a visual representation of such a graph schema, as well as the corresponding syntactical representation, as it could be provided by a data architect or application developer to formally define the schema of our fraud graph example.

Graph database schema.png
Schema for the graph data from the graph database above (left: graphical representation; right: corresponding data definition language).

In this example, the overall schema is composed of the six elements enclosed in the top-level GRAPH TYPE definition:

  • The first three lines of the GRAPH TYPE definition introduce so-called node types: person, customer, and account; they describe structural constraints on the nodes in the graph data. The customer node type, for instance, tells us that there can be nodes with label Customer, which carry a property customerId and are derived from a more general person node type. Concretely, this means that nodes with the label Customer inherit the properties name and birthDate defined in node type person. Note that properties also specify a data type (such as string, date, or numerical values) and may be marked as optional.
  • Edge types build upon node types and specify the type and structure of edges that connect nodes. Our example defines a single edge type connecting nodes of node type customer with nodes of type account. Informally speaking, this tells us that Customer-labeled nodes in our data graph can be connected to Account-labeled nodes via an edge labeled Owns, which is annotated with a property since, pointing to a date value.
  • The last two lines specify additional constraints that go beyond the mere structure of our graph. The KEY constraint demands that the value of the iban property uniquely identifies an account, i.e., no two Account-labeled nodes can share the same IBAN number. This can be thought of as the equivalent of primary keys in relational databases, which enforce the uniqueness of one or more attributes within the scope of a given table. The second constraint enforces that every account has at least one owner, which is reminiscent of a foreign-key constraint in relational databases.

Also note the keyword STRICT in the graph type definition: it enforces that all elements in the graph obey one of the types defined in the graph type body, and that all constraints are satisfied. Concretely, it implies that our graph can contain onlyPerson-, Customer-, and Account-labeled nodes with the respective sets of properties that the only possible edge type is between customers and accounts with label Owns and that the key and foreign constraints must be satisfied. Hence, the STRICT keyword can be understood as a mechanism to implement the schema-first paradigm, as it is maximally prescriptive and strongly constrains the graph structure.

Related content
Optimizing placement of configuration data ensures that it’s available and consistent during “network partitions”.

To account for flexible- and partial-schema use cases, PG-Schema offers a LOOSE keyword as an alternative to STRICT, which comes with a more relaxed interpretation: graph types that are defined as LOOSE allow for node and edge types that are not explicitly listed in the graph type definition. Mechanisms similar to STRICT vs. LOOSE keywords at graph type level can be found at different levels of the language.

For instance, keywords such as OPEN (vs. the implicit default, CLOSED) can be used to either partially or fully specify the set of properties that can be carried by vertices with a given vertex label (e.g., expressing that a Person-labeled node must have a name but may have an arbitrary set of other (unknown) properties, without requiring enumeration of the entire set). The flexibility arising from these mechanisms makes it easy to define partial schemata that can be adjusted and refined incrementally, to capture the schema evolution requirements sketched above.

Not only does PG-Schema provide a concrete proposal for a graph schema and constraint language, but it also aims to raise awareness of the importance of a standardized approach to graph schemata. The concepts and ideas in the paper were codeveloped by major companies and academics in the graph space, and there are ongoing initiatives within the LDBC that aim toward a standardization of these concepts.

In particular, the LDBC has close ties with the ISO committee that is currently in the process of standardizing a new graph query language (GQL). As some GQL ISO committee members are coauthors of the PG-Schema paper, there has been a continuous bilateral exchange, and it is anticipated that future versions of the GQL standard will include a rich DDL, which may pick up concepts and ideas presented in the paper.

Research areas

Related content

IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.