Physics-constrained machine learning for scientific computing

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Commercial applications of deep learning have been making headlines for years — never more so than this spring. More surprisingly, deep-learning methods have also shown promise for scientific computing, where they can be used to predict solutions to partial differential equations (PDEs). These equations are often prohibitively expensive to solve numerically; using data-driven methods has the potential to transform both scientific and engineering applications of scientific computing, including aerodynamics, ocean and climate, and reservoir modeling.

A fundamental challenge is that the predictions of deep-learning models trained on physical data typically ignore fundamental physical principles. Such models might, for instance, violate system conservation laws: the solution to a heat transfer problem may fail to conserve energy, or the solution to a fluid flow problem may fail to conserve mass. Similarly, a model’s solution may violate boundary conditions — say, allowing heat flow through an insulator at the boundary of a physical system. This can happen even when the model’s training data includes no such violations: at inference time, the model may simply extrapolate from patterns in the training data in an illicit way.

In a pair of recent papers accepted at the International Conference on Machine Learning (ICML) and the International Conference on Learning Representations (ICLR), we investigate the problems of adding known physics constraints to the predictive outputs of machine learning (ML) models when computing the solutions to PDEs.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

The ICML paper, “Learning physical models that can respect conservation laws”, which we will present in July, focuses on satisfying conservation laws with black-box models. We show that, for certain types of challenging PDE problems with propagating discontinuities, known as shocks, our approach to constraining model outputs works better than its predecessors: it more sharply and accurately captures the physical solution and its uncertainty and yields better performance on downstream tasks.

In this paper, we collaborated with Derek Hansen, a PhD student in the Department of Statistics at the University of Michigan, who was an intern at AWS AI Labs at the time, and Michael Mahoney, an Amazon Scholar in Amazon’s Supply Chain Optimization Technologies organization and a professor of statistics at the University of California, Berkeley.

In a complementary paper we presented at this year’s ICLR, “Guiding continuous operator learning through physics-based boundary constraints”, we, together with Nadim Saad, an AWS AI Labs intern at the time and a PhD student at the Institute for Computational and Mathematical Engineering (ICME) at Stanford University, focus on enforcing physics through boundary conditions. The modeling approach we describe in this paper is a so-called constrained neural operator, and it exhibits up to a 20-fold performance improvement over previous operator models.

So that scientists working with models of physical systems can benefit from our work, we’ve released the code for the models described in both papers (conservation laws | boundary constraints) on GitHub. We also presented on both works in March 2023 at AAAI's symposium on Computational Approaches to Scientific Discovery.

Danielle Maddix Robinson on physics-constrained machine learning for scientific computing
A talk presented in April 2023 at the Machine Learning and Dynamical Systems Seminar at the Alan Turing Institute.

Conservation laws

Recent work in scientific machine learning (SciML) has focused on incorporating physical constraints into the learning process as part of the loss function. In other words, the physical information is treated as a soft constraint or regularization.

Related content
Hybrid model that combines machine learning with differential equations outperforms models that use either strategy by itself.

A main issue with these approaches is that they do not guarantee that the physical property of conservation is satisfied. To address this issue, in “Learning physical models that can respect conservation laws”, we propose ProbConserv, a framework for incorporating constraints into a generic SciML architecture. Instead of expressing conservation laws in the differential forms of PDEs, which are commonly used in SciML as extra terms in the loss function, ProbConserv converts them into their integral form. This allows us to use ideas from finite-volume methods to enforce conservation.

In finite-volume methods, a spatial domain — say, the region through which heat is propagating — is discretized into a finite set of smaller volumes called control volumes. The method maintains the balance of mass, energy, and momentum throughout this domain by applying the integral form of the conservation law locally across each control volume. Local conservation requires that the out-flux from one volume equals the in-flux to an adjacent volume. By enforcing the conservation law across each control volume, the finite-volume method guarantees global conservation across the whole domain, where the rate of change of the system’s total mass is given by the change in fluxes along the domain boundaries.

Flux Volume Edit-01_230525135151.jpg
The integral form of a conservation law states that the rate of change of the total mass of the system over a domain (Ω) is equal to the difference between the in-flux and out-flux along the domain boundaries (∂Ω).

More specifically, the first step in the ProbConserv method is to use a probabilistic machine learning model — such as a Gaussian process, attentive neural process (ANP), or ensembles of neural-network models — to estimate the mean and variance of the outputs of the physical model. We then use the integral form of the conservation law to perform a Bayesian update to the mean and covariance of the distribution of the solution profile such that it satisfies the conservation constraint exactly in the limit.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

In the paper, we provide a detailed analysis of ProbConserv’s application to the generalized porous-medium equation (GPME), a widely used parameterized family of PDEs. The GPME has been used in applications ranging from underground flow transport to nonlinear heat transfer to water desalination and beyond. By varying the PDE parameters, we can describe PDE problems with different levels of complexity, ranging from “easy” problems, such as parabolic PDEs that model smooth diffusion processes, to “hard” nonlinear hyperbolic-like PDEs with shocks, such as the Stefan problem, which has been used to model two-phase flow between water and ice, crystal growth, and more complex porous media such as foams.

For easy GPME variants, ProbConserv compares well to state-of-the-art competitors, and for harder GPME variants, it outperforms other ML-based approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with the problem of estimating shock propagation, which is difficult given ML models’ bias toward smooth and continuous behavior. It also effectively handles heteroskedasticity, or fluctuation in variables’ standard deviations. In all cases, it achieves superior predictive performance on downstream tasks, such as predicting shock location, which is a challenging problem even for advanced numerical solvers.

Examples

Conservation of mass.png
Conservation of mass can be violated by a black-box deep-learning model (here, the ANP), even when the PDE is applied as a soft constraint (here, SoftC-ANP) on the loss function, à la physics-informed neural networks (PINNs). This figure shows the variation of total mass over time for the smooth constant coefficient diffusion equation (an “easy” GPME example). The true mass remains zero, since there is zero net flux from the domain boundaries, and thus mass cannot be created or destroyed in the domain interior.
Uncertainty quantification.png
Density solution profiles with uncertainty quantification. In the “hard” version of the GPME problem, also known as the Stefan problem, the solution profile may contain a moving sharp interface in space, known as a shock. The shock here separates the region with fluid from the degenerate one with zero fluid density. The uncertainty is largest in the shock region and becomes smaller in the areas away from it. The main idea behind ProbConserv’s UQ method is to use the uncertainty in the unconstrained black box to modify the mean and covariance at the locations where the variance is largest, to satisfy the conservation constraint. The constant-variance assumption in the HardC-ANP baseline does not result in improvement on this hard task, while ProbConserv results in a better estimate of the solution at the shock and a threefold improvement in the mean squared error (MSE).
Shock position.png
Downstream task. Histogram of the posterior of the shock position computed by ProbConserv and the other baselines. While the baseline models skew the distribution of the shock position, ProbConserv computes a distribution that is well-centered around the true shock position. This illustrates that enforcing physical constraints such as conservation is necessary in order to provide reliable and accurate estimations of the shock position.

Boundary conditions

Boundary conditions (BCs) are physics-enforced constraints that solutions of PDEs must satisfy at specific spatial locations. These constraints carry important physical meaning and guarantee the existence and the uniqueness of PDE solutions. Current deep-learning-based approaches that aim to solve PDEs rely heavily on training data to help models learn BCs implicitly. There is no guarantee, though, that these models will satisfy the BCs during evaluation. In our ICLR 2023 paper, “Guiding continuous operator learning through physics-based boundary constraints”, we propose an efficient, hard-constrained, neural-operator-based approach to enforcing BCs.

Related content
Amazon quantum computing scientist recognized for ‘outstanding contributions to physics’.

Where most SciML methods (for example, PINNs) parameterize the solution to PDEs with a neural network, neural operators aim to learn the mapping from PDE coefficients or initial conditions to solutions. At the core of every neural operator is a kernel function, formulated as an integral operator, that describes the evolution of a physical system over time. For our study, we chose the Fourier neural operator (FNO) as an example of a kernel-based neural operator.

We propose a model we call the boundary-enforcing operator network (BOON). Given a neural operator representing a PDE solution, a training dataset, and prescribed BCs, BOON applies structural corrections to the neural operator to ensure that the predicted solution satisfies the system BCs.

BOON architecture full.png
BOON architectures. Kernel correction architectures for commonly used Dirichlet, Neumann, and periodic boundary conditions that carry different physical meanings.

We provide our refinement procedure and demonstrate that BOON’s solutions satisfy physics-based BCs, such as Dirichlet, Neumann, and periodic. We also report extensive numerical experiments on a wide range of problems including the heat and wave equations and Burgers's equation, along with the challenging 2-D incompressible Navier-Stokes equations, which are used in climate and ocean modeling. We show that enforcing these physical constraints results in zero boundary error and improves the accuracy of solutions on the interior of the domain. BOON’s correction method exhibits a 2-fold to 20-fold improvement over a given neural-operator model in relative L2 error.

Examples

Insulator at boundary.png
Nonzero flux at an insulator on the boundary. The solution to the unconstrained Fourier-neural-operator (FNO) model for the heat equation has a nonzero flux at the left insulating boundary, which means that it allows heat to flow through an insulator. This is in direct contradiction to the physics-enforced boundary constraint. BOON, which satisfies this so-called Neumann boundary condition, ensures that the gradient is zero at the insulator. Similarly, at the right boundary, we see that the FNO solution has a negative gradient at a positive heat source and that the BOON solution corrects this nonphysical result. Guaranteeing no violation of the underlying physics is critical to the practical adoption of these deep-learning models by practitioners in the field.
Stokes's second problem.png
Stokes’s second problem. This figure shows the velocity profile and corresponding absolute errors over time obtained by BOON (top). BOON improves the accuracy at the boundary, which, importantly, also improves accuracy on the interior of the domain compared to the unconstrained Fourier-neural-operator (FNO) model (bottom), where the errors at the boundary propagate inward over time.
Initial condition.png
2-D Navier-Stokes lid-driven cavity flow initial condition. The initial vorticity field (perpendicular to the screen), which is defined as the curl of the velocity field. At the initial time step, t = 0, the only nonzero component of the horizontal velocity is given by the top constant Dirichlet boundary condition, which drives the viscous incompressible flow at the later time steps. The other boundaries have the common no-slip Dirichlet boundary condition, which fixes the velocity to be zero at those locations.

Navier-Stokes lid-driven flow
2-D Navier-Stokes lid-driven cavity flow vorticity field. The vorticity field (perpendicular to the screen) within a square cavity filled with an incompressible fluid, which is induced by a fixed nonzero horizontal velocity prescribed by the Dirichlet boundary condition at the top boundary line for a 25-step (T=25) prediction until final time t = 2.
2-D Navier-Stokes lid-driven cavity flow relative error.
The L2 relative-error plots show significantly higher relative error over time for the data-driven Fourier neural operator (FNO) compared to that of our constrained BOON model on the Navier-Stokes lid-driven cavity flow problem for both a random test sample and the average over the test samples.

Acknowledgements: This work would have not been possible without the help of our coauthor Michael W. Mahoney, an Amazon Scholar; coauthors and PhD student interns Derek Hansen and Nadim Saad; and mentors Yuyang Wang and Margot Gerritsen.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for Amazon, working with other acclaimed engineers and scientists. Key job responsibilities Join us to work as an integral part of a team that has diverse experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
ES, B, Barcelona
Are you interested in defining the science strategy that enables Amazon to market to millions of customers based on their lifecycle needs rather than one-size-fits-all campaigns? We are seeking a Senior Applied Scientist to lead the science strategy for our Lifecycle Marketing Experimentation roadmap within the PRIMAS (Prime & Marketing analytics and science) team. The position is open to candidates in Amsterdam and Barcelona. In this role, you will own the end-to-end science approach that enables EU marketing to shift from broad, generic campaigns to targeted, cohort-based marketing that changes customer behavior. This is a high-ambiguity, high-impact role where you will define what problems are worth solving, build the science foundation from scratch, and influence senior business leaders on marketing strategy. You will work directly with Business Directors and channel leaders to solve critical business problems: how do we win back customers lost to competitors, convert Young Adults to Prime, and optimize marketing spend by de-averaging across customer cohorts. Key job responsibilities Science Strategy & Leadership: 1. Own the end-to-end science strategy for lifecycle marketing, defining the roadmap across audience targeting, behavioral modeling, and measurement 2. Navigate high ambiguity in defining customer journey frameworks and behavioral models – our most challenging science problem with no established playbook 3. Lead strategic discussions with business leaders translating business needs into science solutions and building trust across business and tech partners 4. Mentor and guide a team of 2-3 scientists and BIEs on technical execution while contributing hands-on to the hardest problems Advanced Customer Behavior Modeling: 1. Build sophisticated propensity models identifying customer cohorts based on lifecycle stage and complex behavioral patterns (e.g., Bargain hunters, Young adults Prime prospects) 2. Define customer journey frameworks using advanced techniques (Hidden Markov Models, sequential decision-making) to model how customers transition across lifecycle stages 3. Identify which customer behaviors and triggers drive lifecycle progression and what messaging/levers are most effective for each cohort 4. Integrate 1P behavioral data with 2P survey insights to create rich, actionable audience definitions Measurement & Cross-Workstream Integration: 1. Partner with measurement scientist to design experiments (RCTs) that isolate audience targeting effects from creative effects 2. Ensure audience definitions, journey models, and measurement frameworks work coherently across Meta, LiveRamp, and owned channels 3. Establish feedback loops connecting measurement insights back to model improvements About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 100+ people called WIMSI (WW Integrated Marketing Systems and Intelligence). WIMSI core mission is to accelerate marketing technology capabilities that enable de-averaged customer experiences across the marketing funnel: awareness, consideration, and conversion.
US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
KR, Seoul
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.