Physics-constrained machine learning for scientific computing

Amazon researchers draw inspiration from finite-volume methods and adapt neural operators to enforce conservation laws and boundary conditions in deep-learning models of physical systems.

Commercial applications of deep learning have been making headlines for years — never more so than this spring. More surprisingly, deep-learning methods have also shown promise for scientific computing, where they can be used to predict solutions to partial differential equations (PDEs). These equations are often prohibitively expensive to solve numerically; using data-driven methods has the potential to transform both scientific and engineering applications of scientific computing, including aerodynamics, ocean and climate, and reservoir modeling.

A fundamental challenge is that the predictions of deep-learning models trained on physical data typically ignore fundamental physical principles. Such models might, for instance, violate system conservation laws: the solution to a heat transfer problem may fail to conserve energy, or the solution to a fluid flow problem may fail to conserve mass. Similarly, a model’s solution may violate boundary conditions — say, allowing heat flow through an insulator at the boundary of a physical system. This can happen even when the model’s training data includes no such violations: at inference time, the model may simply extrapolate from patterns in the training data in an illicit way.

In a pair of recent papers accepted at the International Conference on Machine Learning (ICML) and the International Conference on Learning Representations (ICLR), we investigate the problems of adding known physics constraints to the predictive outputs of machine learning (ML) models when computing the solutions to PDEs.

Related content
Danielle Maddix Robinson's mathematics background helps inform robust models that can predict everything from retail demand to epidemiology.

The ICML paper, “Learning physical models that can respect conservation laws”, which we will present in July, focuses on satisfying conservation laws with black-box models. We show that, for certain types of challenging PDE problems with propagating discontinuities, known as shocks, our approach to constraining model outputs works better than its predecessors: it more sharply and accurately captures the physical solution and its uncertainty and yields better performance on downstream tasks.

In this paper, we collaborated with Derek Hansen, a PhD student in the Department of Statistics at the University of Michigan, who was an intern at AWS AI Labs at the time, and Michael Mahoney, an Amazon Scholar in Amazon’s Supply Chain Optimization Technologies organization and a professor of statistics at the University of California, Berkeley.

In a complementary paper we presented at this year’s ICLR, “Guiding continuous operator learning through physics-based boundary constraints”, we, together with Nadim Saad, an AWS AI Labs intern at the time and a PhD student at the Institute for Computational and Mathematical Engineering (ICME) at Stanford University, focus on enforcing physics through boundary conditions. The modeling approach we describe in this paper is a so-called constrained neural operator, and it exhibits up to a 20-fold performance improvement over previous operator models.

So that scientists working with models of physical systems can benefit from our work, we’ve released the code for the models described in both papers (conservation laws | boundary constraints) on GitHub. We also presented on both works in March 2023 at AAAI's symposium on Computational Approaches to Scientific Discovery.

Danielle Maddix Robinson on physics-constrained machine learning for scientific computing
A talk presented in April 2023 at the Machine Learning and Dynamical Systems Seminar at the Alan Turing Institute.

Conservation laws

Recent work in scientific machine learning (SciML) has focused on incorporating physical constraints into the learning process as part of the loss function. In other words, the physical information is treated as a soft constraint or regularization.

Related content
Hybrid model that combines machine learning with differential equations outperforms models that use either strategy by itself.

A main issue with these approaches is that they do not guarantee that the physical property of conservation is satisfied. To address this issue, in “Learning physical models that can respect conservation laws”, we propose ProbConserv, a framework for incorporating constraints into a generic SciML architecture. Instead of expressing conservation laws in the differential forms of PDEs, which are commonly used in SciML as extra terms in the loss function, ProbConserv converts them into their integral form. This allows us to use ideas from finite-volume methods to enforce conservation.

In finite-volume methods, a spatial domain — say, the region through which heat is propagating — is discretized into a finite set of smaller volumes called control volumes. The method maintains the balance of mass, energy, and momentum throughout this domain by applying the integral form of the conservation law locally across each control volume. Local conservation requires that the out-flux from one volume equals the in-flux to an adjacent volume. By enforcing the conservation law across each control volume, the finite-volume method guarantees global conservation across the whole domain, where the rate of change of the system’s total mass is given by the change in fluxes along the domain boundaries.

Flux Volume Edit-01_230525135151.jpg
The integral form of a conservation law states that the rate of change of the total mass of the system over a domain (Ω) is equal to the difference between the in-flux and out-flux along the domain boundaries (∂Ω).

More specifically, the first step in the ProbConserv method is to use a probabilistic machine learning model — such as a Gaussian process, attentive neural process (ANP), or ensembles of neural-network models — to estimate the mean and variance of the outputs of the physical model. We then use the integral form of the conservation law to perform a Bayesian update to the mean and covariance of the distribution of the solution profile such that it satisfies the conservation constraint exactly in the limit.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

In the paper, we provide a detailed analysis of ProbConserv’s application to the generalized porous-medium equation (GPME), a widely used parameterized family of PDEs. The GPME has been used in applications ranging from underground flow transport to nonlinear heat transfer to water desalination and beyond. By varying the PDE parameters, we can describe PDE problems with different levels of complexity, ranging from “easy” problems, such as parabolic PDEs that model smooth diffusion processes, to “hard” nonlinear hyperbolic-like PDEs with shocks, such as the Stefan problem, which has been used to model two-phase flow between water and ice, crystal growth, and more complex porous media such as foams.

For easy GPME variants, ProbConserv compares well to state-of-the-art competitors, and for harder GPME variants, it outperforms other ML-based approaches that do not guarantee volume conservation. ProbConserv seamlessly enforces physical conservation constraints, maintains probabilistic uncertainty quantification (UQ), and deals well with the problem of estimating shock propagation, which is difficult given ML models’ bias toward smooth and continuous behavior. It also effectively handles heteroskedasticity, or fluctuation in variables’ standard deviations. In all cases, it achieves superior predictive performance on downstream tasks, such as predicting shock location, which is a challenging problem even for advanced numerical solvers.

Examples

Conservation of mass.png
Conservation of mass can be violated by a black-box deep-learning model (here, the ANP), even when the PDE is applied as a soft constraint (here, SoftC-ANP) on the loss function, à la physics-informed neural networks (PINNs). This figure shows the variation of total mass over time for the smooth constant coefficient diffusion equation (an “easy” GPME example). The true mass remains zero, since there is zero net flux from the domain boundaries, and thus mass cannot be created or destroyed in the domain interior.
Uncertainty quantification.png
Density solution profiles with uncertainty quantification. In the “hard” version of the GPME problem, also known as the Stefan problem, the solution profile may contain a moving sharp interface in space, known as a shock. The shock here separates the region with fluid from the degenerate one with zero fluid density. The uncertainty is largest in the shock region and becomes smaller in the areas away from it. The main idea behind ProbConserv’s UQ method is to use the uncertainty in the unconstrained black box to modify the mean and covariance at the locations where the variance is largest, to satisfy the conservation constraint. The constant-variance assumption in the HardC-ANP baseline does not result in improvement on this hard task, while ProbConserv results in a better estimate of the solution at the shock and a threefold improvement in the mean squared error (MSE).
Shock position.png
Downstream task. Histogram of the posterior of the shock position computed by ProbConserv and the other baselines. While the baseline models skew the distribution of the shock position, ProbConserv computes a distribution that is well-centered around the true shock position. This illustrates that enforcing physical constraints such as conservation is necessary in order to provide reliable and accurate estimations of the shock position.

Boundary conditions

Boundary conditions (BCs) are physics-enforced constraints that solutions of PDEs must satisfy at specific spatial locations. These constraints carry important physical meaning and guarantee the existence and the uniqueness of PDE solutions. Current deep-learning-based approaches that aim to solve PDEs rely heavily on training data to help models learn BCs implicitly. There is no guarantee, though, that these models will satisfy the BCs during evaluation. In our ICLR 2023 paper, “Guiding continuous operator learning through physics-based boundary constraints”, we propose an efficient, hard-constrained, neural-operator-based approach to enforcing BCs.

Related content
Amazon quantum computing scientist recognized for ‘outstanding contributions to physics’.

Where most SciML methods (for example, PINNs) parameterize the solution to PDEs with a neural network, neural operators aim to learn the mapping from PDE coefficients or initial conditions to solutions. At the core of every neural operator is a kernel function, formulated as an integral operator, that describes the evolution of a physical system over time. For our study, we chose the Fourier neural operator (FNO) as an example of a kernel-based neural operator.

We propose a model we call the boundary-enforcing operator network (BOON). Given a neural operator representing a PDE solution, a training dataset, and prescribed BCs, BOON applies structural corrections to the neural operator to ensure that the predicted solution satisfies the system BCs.

BOON architecture full.png
BOON architectures. Kernel correction architectures for commonly used Dirichlet, Neumann, and periodic boundary conditions that carry different physical meanings.

We provide our refinement procedure and demonstrate that BOON’s solutions satisfy physics-based BCs, such as Dirichlet, Neumann, and periodic. We also report extensive numerical experiments on a wide range of problems including the heat and wave equations and Burgers's equation, along with the challenging 2-D incompressible Navier-Stokes equations, which are used in climate and ocean modeling. We show that enforcing these physical constraints results in zero boundary error and improves the accuracy of solutions on the interior of the domain. BOON’s correction method exhibits a 2-fold to 20-fold improvement over a given neural-operator model in relative L2 error.

Examples

Insulator at boundary.png
Nonzero flux at an insulator on the boundary. The solution to the unconstrained Fourier-neural-operator (FNO) model for the heat equation has a nonzero flux at the left insulating boundary, which means that it allows heat to flow through an insulator. This is in direct contradiction to the physics-enforced boundary constraint. BOON, which satisfies this so-called Neumann boundary condition, ensures that the gradient is zero at the insulator. Similarly, at the right boundary, we see that the FNO solution has a negative gradient at a positive heat source and that the BOON solution corrects this nonphysical result. Guaranteeing no violation of the underlying physics is critical to the practical adoption of these deep-learning models by practitioners in the field.
Stokes's second problem.png
Stokes’s second problem. This figure shows the velocity profile and corresponding absolute errors over time obtained by BOON (top). BOON improves the accuracy at the boundary, which, importantly, also improves accuracy on the interior of the domain compared to the unconstrained Fourier-neural-operator (FNO) model (bottom), where the errors at the boundary propagate inward over time.
Initial condition.png
2-D Navier-Stokes lid-driven cavity flow initial condition. The initial vorticity field (perpendicular to the screen), which is defined as the curl of the velocity field. At the initial time step, t = 0, the only nonzero component of the horizontal velocity is given by the top constant Dirichlet boundary condition, which drives the viscous incompressible flow at the later time steps. The other boundaries have the common no-slip Dirichlet boundary condition, which fixes the velocity to be zero at those locations.

Navier-Stokes lid-driven flow
2-D Navier-Stokes lid-driven cavity flow vorticity field. The vorticity field (perpendicular to the screen) within a square cavity filled with an incompressible fluid, which is induced by a fixed nonzero horizontal velocity prescribed by the Dirichlet boundary condition at the top boundary line for a 25-step (T=25) prediction until final time t = 2.
2-D Navier-Stokes lid-driven cavity flow relative error.
The L2 relative-error plots show significantly higher relative error over time for the data-driven Fourier neural operator (FNO) compared to that of our constrained BOON model on the Navier-Stokes lid-driven cavity flow problem for both a random test sample and the average over the test samples.

Acknowledgements: This work would have not been possible without the help of our coauthor Michael W. Mahoney, an Amazon Scholar; coauthors and PhD student interns Derek Hansen and Nadim Saad; and mentors Yuyang Wang and Margot Gerritsen.

Research areas

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
US, MA, Boston
**This is an experimental role to support a business pilot and can potentially span up to 12 months** Embark on a transformative journey as our Sr. Domain Expert Lead, where intellectual rigor meets technological innovation. As a Sr. Domain Expert Lead, you will blend your advanced analytical skills and domain expertise to provide strategic oversight to our human-in-the-loop and model-in-the-loop data pipelines. You will also provide mentorship and guidance to junior team members. Your responsibilities will ensure data excellence through strategic oversight of high-quality data output, while delivering expert consultation throughout the pipeline and fostering iterative development. This position directly impacts the effectiveness and reliability of our AI solutions by maintaining the highest standards of data quality throughout the development process while building capability within the broader team. Key job responsibilities • Serve as a trusted domain advisor to cross-functional teams, providing strategic direction and specialized problem-solving support • Champion domain knowledge sharing across multiple channels and teams to maintain data quality excellence and standardization • Drive collaborative efforts with science teams to optimize output of complex data collections in your domain expertise, ensuring data excellence through iterative feedback loops • Foster team excellence through mentorship and motivation of peers and junior team members • Make informed decisions on behalf of our customers, ensuring that selected code meets industry standards, best practices, and specific client needs • Collaborate with AI teams to innovate model-in-the-loop and human-in-the-loop approaches, to ensure the collection of high-quality data, safeguarding data privacy and security for LLM training, and more. • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.