Prime Video's work on sports field registration, recap/intro detection

Two papers at WACV propose neural models for enhancing video-streaming experiences.

Like all of Amazon’s major technology groups, Amazon Prime Video has a dedicated team of scientists who are working constantly to find new ways to delight our customers and improve our products.

Our work was on display at this year’s IEEE Winter Conference on Applications of Computer Vision, where we presented two papers. One was on sports field registration, or understanding the spatial relationships between objects depicted in sports videos. The other was on recap and intro detection, or automatically identifying the recaps and intros at the beginnings of TV shows, so viewers can skip them if they want.

American football, with dense features
At top is video of an American football play; bottom left is a visualization of our grid keypoints; bottom right is a visualization of our dense features.

Sports field registration involves mapping video images onto a topographical model of the field, to enable enhancement of the video feed. It’s the technology behind the virtual first-down lines in American-football broadcasts or the virtual world-record lines in swimming broadcasts.

Usually, sports field registration requires onsite cameras equipped with sensors and calibrated to reference points on the field. Combining the sensor output with the cameras’ video yields very accurate field registration.

We address the problem of sports field registration in the absence of instrumentation, using video from a single camera capable of pan, tilt, and zoom (PTZ) motion. This could enable the addition of cutting-edge graphics to broadcasts of minor-league or amateur sporting events, broadcasts of less-popular sports, or even video signals from uninstrumented secondary cameras at major sporting events.

Where previous work on this problem modeled field topography using only a few keypoints — usually, intersections of lines laid down on the field — we model the field using a dense grid of keypoints.

Model of a soccer field with a dense grid of keypoints
A traditional model of a soccer field (left), with a few keypoints at the intersections of lines, and our model (right), with a dense grid of keypoints.

Using video annotated according to our modeling scheme, we train a neural network to correlate image pixels with specific keypoints in our model of the field.

The dense grid increases the precision of our registration — provided that we correctly identify the keypoints. But of course, keypoints that don’t lie at the intersections of field lines are harder to identify.

Consequently, we use a second source of information to improve our mapping. This is a set of dense field features that represent the standard distances between lines on the field and between other identifiable regions of the field.

In the figure below, for instance, the black-and-white model at left illustrates the lines of an American-football field, while the black-and-white model at right illustrates the numbers marking the yard lines.

Maps of linear and regional features of an American football field using normalized distances between black and white pixels
An American-football field (top); maps of linear and regional features of the field (second row); and representations of those features using only the distance from each black pixel to the nearest white pixel in the feature map.

The glowing green elements of the bottom images are meant to indicate that features of the black-and-white models are being represented, not according to their absolute location on the field, but according to normalized distances between black pixels and white pixels. 

That is, whereas the keypoints represent absolute field positions, the dense feature set represents field position relative to recurring visual elements of the field. It’s thus a complementary feature set that improves the mapping between a video frame and the sports field.

Using the dense features to verify keypoints adds computational overhead, however, and our system needs to work in real time. Our network architecture therefore incorporates several properties meant to reduce this overhead.

The first is that it is a multitask network: from the input data, it produces a single vector representation that passes to both the keypoint estimator and the dense-feature extractor.

Model of an encoder passing a vector representation of input data to a keypoint detector and a dense-feature extractor
Our network architecture. A shared encoder produces a vector representation of the input data that passes to both the keypoint detector and the dense-feature extractor.

The second is that the network uses the dense features for verification only if it has reason to believe that the keypoint estimates are inaccurate. Specifically, given the initial keypoint estimate for a frame of video, the network takes several different samples of keypoints and determines whether they align with each other. If they don’t, it uses the dense features to refine its estimate (the self-verification and online-refinement modules in the diagram above).

By combining these techniques, we were able to get our sports field registration system to work in real time. In tests, we compared it to multiple state-of-the-art sports field registration systems on five data sets: soccer, American football, ice hockey, basketball, and tennis.

On different sports, our system’s performance ranged from comparable to baseline to much better. For American football, for instance, according to the standard version of the intersection-over-union measure, our system was 2.5 times as accurate as the best-performing baseline.

Five sports
At left are grid keypoints and the projection of field templates onto the videos of five different sports; at right are mappings of the camera’s field of view onto models of the fields.

Intro and recap detection

Fans of Prime Video’s hit shows, such as The Marvelous Mrs. Maisel, are familiar with the option of skipping the introductions — which usually feature credits and theme music — and recaps — quick summaries of the narrative to date — at the beginning of individual episodes.

With existing content, however, providing the option to skip intros and recaps requires hand coding. We’d like to extend that option to other Prime Video programming through automatic detection of intros and recaps.

Both intros and recaps have distinguishing features that should make them detectable. Intros tend to involve text (credits) superimposed on the screen, often with extended musical performances in the background, while recaps usually involve unusually quick cuts between scenes. Frequently, they’re also introduced by text.

Our detector is a neural network, with an architecture chosen to maximize responsiveness to these elements of intros and recaps. Unlike alternative approaches that require an entire video series to find intro and recap timestamps, our approach can work on each episode independently, which makes it more practical.

With our system, a given frame of video passes first to a convolutional neural network (CNN). CNNs are designed to step through input images, applying the same filters to successive blocks of pixels. They can thus learn to identify text regardless of what region of the screen it falls in. We also pass the input audio to the same CNN, which learns a fused representation of audio and video.

Architecture of intro and recap detector: individual frames of input video and outputs of the conditional random field
The architecture of our intro and recap detector. The blue lines at the bottom represent individual frames of input video. The outputs of the conditional random field (CRF) are “R” for recap, “I” for intro, and “C” for content.

The output of the CNN then passes to a bidirectional long-short-term-memory (Bi-LSTM) network. An LSTM is a type of neural network that processes sequential inputs in order, so that each output reflects both the inputs and outputs that preceded it. A Bi-LSTM passes through the same sequence both forward and backward. This allows our network to recognize longer-term dependencies — such as the cutting rates in particular video sequences.

Finally, the output of the LSTM passes to a conditional random field, which essentially performs curve smoothing. Smoother contours within a segment of video enable clearer identification of the boundaries between segments — between, say, intros and recaps, or between either and the new content of an episode.

In tests, we compared the performance of our system to baselines that used the same CNN but different methods to process the CNN’s output: a single-layer LSTM; a two-layer LSTM; a Bi-LSTM; and a Bi-LSTM that uses Viterbi decoding, rather than a CRF, for smoothing. We find that our system dramatically outperforms all four baselines. 

Research areas

Related content

ES, Barcelona
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, San Francisco
The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Science Manager to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will lead a strong science team and work closely with other science and engineering leaders, product and business partners together to build the best personalized customer experience for Prime Video. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Lead to develop AI solutions for various Prime Video recommendation and personalization systems using Deep learning, GenAI, Reinforcement Learning, recommendation system and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Hire and grow a science team working in this exciting video personalization domain. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on methodologies for Generative Artificial Intelligence (GenAI) models. As a Senior Applied Scientist, you will be responsible for leading the development of novel algorithms and modeling techniques to advance the state of the art. Your work will directly impact our customers and will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI. You will have significant influence on our overall strategy by working at the intersection of engineering and applied science to scale pre-training and post-training workflows and build efficient models. You will support the system architecture and the best practices that enable a quality infrastructure. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Pre-training and post-training multimodal LLMs - Scale training, optimization methods, and learning objectives - Utilize, build, and extend upon industry-leading frameworks - Work with other team members to investigate design approaches, prototype new technology, scientific techniques and evaluate technical feasibility - Deliver results independently in a self-organizing Agile environment while constantly embracing and adapting new scientific advances About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
CA, BC, Vancouver
Join our Amazon Private Brands Selection Guidance organization in building science and tech solutions at scale to delight our customers with products across our leading private brands such as Amazon Basics, Amazon Essentials, and by Amazon. The Selection Guidance team applies Generative AI, Machine Learning, Statistics, and Economics solutions to drive our private brands product assortment, strategic business decisions, and product inputs such as title, price, merchandising and ordering. We are an interdisciplinary team of Scientists, Economists, Engineers, and Product Managers incubating and building day one solutions using novel technology, to solve some of the toughest business problems at Amazon. As a Sr. Data Scientist you will invent novel solutions and prototypes, and directly contribute to bringing your ideas to life through production implementation. Current research areas include entity resolution, agentic AI, large language models, and product substitutes. You will review and guide scientists across the team on their designs and implementations, and raise the team bar for science research and prototypes. This is a unique, high visibility opportunity for someone who wants to develop ambitious science solutions and have direct business and customer impact. Key job responsibilities - Partner with business stakeholders to deeply understand APB business problems and frame ambiguous business problems as science problems and solutions. - Invent novel science solutions, develop prototypes, and deploy production software to solve business problems. - Review and guide science solutions across the team. - Publish and socialize your and the team's research across Amazon and external avenues as appropriate - Leverage industry best practices to establish repeatable applied science practices, principles & processes.
US, WA, Seattle
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As an Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. You will be part of a team committed to pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work on scale. This position requires experience with developing Multi-modal LLMs and Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - Participate in the design, development, evaluation, deployment and updating of data-driven models for computer vision applications. - Research and implement the state-of-the-art computer vision and Vision Language models algorithms. - Collaborate with product managers and engineering teams to design and implement computer vision and machine learning based features for Ring devices - Influence system design and product vision by making informed decisions on the selection of technology, data sources, algorithms, and sensors.