Pronunciation detection for Alexa’s new English-learning experience

Data augmentation, novel loss functions, and weakly supervised training enable a state-of-the art model for recognizing mispronunciations.

This blog post is also available in Spanish.

In January 2023, Alexa launched a language-learning experience in Spain that helps Spanish speakers learn beginner-level English. The experience was developed in collaboration with Vaughan, the leading English-language-learning provider in Spain, and it aimed to provide an immersive English-learning program, with particular focus on pronunciation evaluation.

We are now expanding this offering to Mexico and the Spanish-speaking population in the US and will be adding more languages in the future. The language-learning experience includes structured lessons on vocabulary, grammar, expression, and pronunciation, with practice exercises and quizzes. To try it, set your device language to Spanish and tell Alexa “Quiero aprender Inglés.”

Mini-lesson content page.png
Mini-lesson content page: lessons covering vocabulary, grammar, expression, and pronunciation.

The highlight of this Alexa skill is its pronunciation feature, which provides accurate feedback whenever a customer mispronounces a word or sentence. At this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), we presented a paper describing our state-of-the-art approach to mispronunciation detection.

Pronunciation correction.jpg
Pronunciation correction: Blue highlighting indicates correct pronunciation. Red highlighting indicates incorrect pronunciation. For incorrectly pronounced phrases/words, Alexa will provide instructions on how to pronounce them.

Our method uses a novel phonetic recurrent-neural-network-transducer (RNN-T) model that predicts phonemes, the smallest units of speech, from the learner’s pronunciation. The model can therefore provide fine-grained pronunciation evaluation, at the word, syllable, or phoneme level. For example, if a learner mispronounces the word “rabbit” as “rabid”, the model will output the five-phoneme sequence R AE B IH D. It can then detect the mispronounced phonemes (IH D) and syllable (-bid) by using Levenshtein alignment to compare the phoneme sequence with the reference sequence “R AE B AH T”.

Related content
In a top-3% paper at ICASSP, Amazon researchers adapt graph-based label propagation to improve speech recognition on underrepresented pronunciations.

The paper highlights two knowledge gaps that have not been addressed in previous pronunciation-modeling work. The first is the ability to disambiguate similar-sounding phonemes from different languages (e.g., the rolled “r” sounds in Spanish vs. the “r” sound in English). We tackled this challenge by designing a multilingual pronunciation lexicon and building a massive code-mixed phonetic dataset for training.

The other knowledge gap is the ability to learn unique mispronunciation patterns from language learners. We achieve this by leveraging the autoregressiveness of the RNN-T model, meaning the dependence of its outputs on the inputs and outputs that preceded them. This context awareness means that the model can capture frequent mispronunciation patterns from training data. Our pronunciation model has achieved state-of-the-art performance in both phoneme prediction accuracy and mispronunciation detection accuracy.

L2 data augmentation

One of the key technical challenges in building a phonetic-recognition model for non-native (L2) speakers is that there are very limited datasets for mispronunciation diagnosis. In our Interspeech 2022 paper “L2-GEN: A neural phoneme paraphrasing approach to L2 speech synthesis for mispronunciation diagnosis”, we proposed bridging this gap by using data augmentation. Specifically, we built a phoneme paraphraser that can generate realistic L2 phonemes for speakers from a specific locale — e.g., phonemes representing a native Spanish speaker talking in English.

Related content
Parallel speech recognizers, language ID, and translation models geared to conversational speech are among the modifications that make Live Translation possible.

As is common with grammatical-error correction tasks, we use a sequence-to-sequence model but flip the task direction, training the model to mispronounce words rather than correct mispronunciations. Additionally, to further enrich and diversify the generated L2 phoneme sequences, we propose a diversified and preference-aware decoding component that combines a diversified beam search with a preference loss that is biased toward human-like mispronunciations.

For each input phone, or speech fragment, the model produces several candidate phonemes as outputs, and sequences of phonemes are modeled as a tree, with possibilities proliferating with each new phone. Typically, the top-ranked phoneme sequences are extracted from the tree through beam search, which pursues only those branches of the tree with the highest probabilities. In our paper, however, we propose a beam search method that prioritizes unusual phonemes, or phoneme candidates that differ from most of the others at the same depth in the tree.

From established sources in the language-learning literature, we also construct lists of common mispronunciations at the phoneme level, represented as pairs of phonemes, one the standard phoneme in the language and one its nonstandard variant. We construct a loss function that, during model training, prioritizes outputs that use the nonstandard variants on our list.

In experiments, we saw accuracy improvements of up to 5% in mispronunciation detection over a baseline model trained without augmented data.

Balancing false rejection and false acceptance

A key consideration in designing a pronunciation model for a language-learning experience is to balance the false-rejection and false-acceptance ratio. A false rejection occurs when the pronunciation model detects a mispronunciation, but the customer was actually correct or used a consistent but lightly accented pronunciation. A false acceptance occurs when a customer mispronounces a word, and the model fails to detect it.

Related content
Methods for learning from noisy data, using phonetic embeddings to improve entity resolution, and quantization-aware training are a few of the highlights.

Our system has two design features intended to balance these two metrics. To reduce false acceptances, we first combine our standard pronunciation lexicons for English and Spanish into a single lexicon, with multiple phonemes corresponding to each word. Then, we use that lexicon to automatically unannotated speech samples that fall into three categories: native Spanish, native English, and code-switched Spanish and English. Training the model on this dataset enables it to distinguish very subtle differences between phonemes.

To reduce false rejections, we use a multireference pronunciation lexicon where each word is associated with multiple reference pronunciations. For example, the word “data” can be pronounced as either “day-tah” or “dah-tah”, and the system will accept both variations as correct.

In ongoing work, we’re exploring several approaches to further improving our pronunciation evaluation feature. One of these is building a multilingual model that can be used for pronunciation evaluation for many languages. We are also expanding the model to diagnose more characteristics of mispronunciation, such as tone and lexical stress.

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.