Proving that solutions to incremental satisfiability problems are correct

Method enables machine-checkable proofs of SAT solvers’ decisions on incremental SAT problems, in which problem constraints are gradually imposed over time.

Automated reasoning can be used to mathematically prove whether software or hardware will do what it’s supposed to. In practice, automated reasoning often relies on programs known as SAT solvers, which determine whether formal expressions describing the constraints on a system can be satisfied.

SAT is notoriously difficult (it is the original NP-complete problem), and SAT solvers use all kinds of clever tricks to make it tractable: popular SAT solvers have tens of thousands of lines of code. But how do we know the SAT solver’s decisions — about the satisfiability of a given expression — are reliable? The programs are large enough that using formal analysis to verify them would be an enormous effort.

SAT solver
An example of an unsatisfiable SAT problem, since the first two clauses ((xy) and (x ∨ ¬y)) are satisfiable only if x is true, whereas the final clause ((¬x)) requires x to be false.

One solution is for the SAT solver to generate a record — a trace — of its reasoning, which can be verified by an automatic proof checker. A proof checker is a comparatively simple program, which is much easier to verify than a SAT solver. And for SAT problems whose constraints can all be specified at once — even very, very complex SAT problems — there are methods for reliably generating machine-checkable proofs.

Unfortunately, in most practical situations, a SAT problem’s constraints can’t all be specified at once. Often, when we’re verifying code or hardware or network performance, we want to start by checking one constraint and, based on whether it applies or not, check a second constraint, and so on, building up our set of constraints one by one. Existing methods for generating checkable proofs don’t work with such incremental SAT problems.

Related content
CAV keynote lecture by the director of applied science for AWS Identity explains how AWS is making the power of automated reasoning available to all customers.

At this year’s conference on Formal Methods in Computer-Aided Design (FMCAD), we presented a method for generating checkable proofs for incremental SAT problems. A SAT problem consists of a long list of constraints, and the expression of each constraint is called a clause. To make SAT problems tractable, SAT solvers delete clauses that can be satisfied by the same truth assignments that satisfy some other clause.

With incremental SAT, a deleted clause sometimes needs to be restored, to ensure consistency as new constraints are added. In such cases, our approach to proof generation treats the restored clause as though it had never been deleted in the first place. This simple trick enables existing proof generation frameworks to generalize to incremental SAT. We explain in more detail below.

Incremental SAT

A SAT problem is a sequence of constraints expressed using variable names and the Boolean operators ∧ (and) and ∨ (or). The question is simply whether there’s some assignment of truth and falsity to the variables that makes the expression true. For instance, the expression (A B) (¬A ¬B) (read “(A or B) and (not-A or not-B)” is satisfiable, because it’s true if either A or B is true and the other is false. The expression has two clauses, (AB) and (¬A ∨ ¬B).

As the number of clauses increases, this seemingly straightforward problem becomes intractably difficult. One of the tricks SAT solvers use to simplify it is to delete a clause if its conjunction with a second clause is equisatisfiable with the second clause alone, where “equisatisfiable” means that two expressions are either both satisfiable or both unsatisfiable.

Related content
To mark the occasion of the eighth Federated Logic Conference (FloC), Amazon’s Byron Cook, Daniel Kröning, and Marijn Heule discussed automated reasoning’s prospects.

For example, consider an incremental SAT problem that includes the clauses (AB) and A ∨ ¬B) The solver might keep the first clause and delete the second because (A B) and the conjunction (AB) ∧ (¬A ∨ ¬B) are equisatisfiable. Then, because it’s an incremental problem, two new clauses, (A) and (B), are added. (AB) ∧ (A) ∧ (B) is satisfiable, because (AB) is true if both A and B are true. But (¬A ∨ ¬B) is false if both A and B are true, so it needs to be added back to the expression, or the SAT solver might give the wrong answer.

When a SAT solver working on an incremental SAT problem deletes a clause, it stores it in a buffer called the reconstruction stack, together with a truth-value assignment that ensures that we can reconstruct a valid assignment in the original problem from the solver-modified problem. When a new clause is added to the problem expression, if the truth-value required to satisfy it conflicts with any of the assignments in the reconstruction stack, the conflicting clauses are restored to the problem expression and re-evaluated. They may receive different truth-value assignments — or the solver may conclude that the expression is unsatisfiable.

Algorithmically, this procedure is effective: it ensures that the SAT solver’s verdict will be sound. But its logic is difficult to capture in the language of a formal proof. So while today’s SAT solvers can solve incremental SAT problems, they rarely try to prove that their solutions are sound.

Generating proofs

This is where our method comes in. In addition to deleting clauses from a problem expression, SAT solvers also add clauses. The additions are logically entailed by clauses already in the expression, so they don’t affect satisfiability, but they may make it easier for the solver to recognize potential conflicts between clauses.

Related content
Distributing proof search, reasoning about distributed systems, and automating regulatory compliance are just three fruitful research areas.

A typical proof generator steps through the trace of all these additions and deletions, building up a proof of their validity. Our method instead starts at the end of the trace and works backward. Where we find a step that restores a clause in the proof, we store that clause in a buffer; if we later (that is, earlier in the trace) find the deletion of the same clause, we simply delete both the original deletion and the subsequent restoration. Once we’ve cleaned up the trace from the bottom to the top, we work back through it from the top down, building a proof in the conventional way.

Since the deleted clauses are equisatisfiable with clauses remaining in the expression, their deletion has no effect on the validity of the ensuing proof steps — at least until the point of conflict with a newly added clause, where the deleted clause was added back anyway. So treating the deletions as if they never happened doesn’t compromise the soundness of the proof.

To evaluate the practicality of our approach, we modified one of the most popular current SAT solvers to implement it and tested it on a dataset of 300 incremental SAT problems, six of which are satisfiable and 294 of which are not. The modified solver produced valid proofs for all 294 unsatisfiable examples. (The six satisfiable examples are proven satisfiable by the choice of truth-value assignments.) Our algorithm was also efficient enough to be practical, taking around a minute to produce a one-gigabyte proof, or an overhead of about 5% relative to the solving time.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.