Quantum key distribution and authentication: Separating facts from myths

Key exchange protocols and authentication mechanisms solve distinct problems and must be integrated in a secure communication system.

Quantum key distribution (QKD) is a technology that leverages the laws of quantum physics to securely share secret information between distant communicating parties. With QKD, quantum-mechanical properties ensure that if anyone tries to tamper with the secret-sharing process, the communicating parties will know. Keys established through QKD can then be used in traditional symmetric encryption or with other cryptographic technologies to secure communications.

“Record now, decrypt later" (RNDL) is a cybersecurity risk arising from advances in quantum computing. The term refers to the situation in which attackers record encrypted data today, even though they cannot decrypt it immediately. They store this data with the expectation that future quantum computers will be powerful enough to break the cryptographic algorithms currently securing it. Sensitive information such as financial records, healthcare data, or state secrets could be at risk, even years after it was transmitted.

Mitigating RNDL requires adopting quantum-resistant cryptographic methods, such as post-quantum cryptography (PQC) and/or quantum key distribution (QKD), to ensure confidentiality against future quantum advancements. AWS has invested in the migration to post-quantum cryptography to protect the confidentiality, integrity, and authenticity of customer data.

Quantum communication is important enough that in 2022, three of its pioneers won the Nobel Prize for physics. However, misconceptions about QKD’s role still persist. One of them is that QKD lacks practical value because it “doesn’t solve the authentication problem”. This view can obscure the broad benefits that QKD brings to secure communications when integrated properly into existing systems.

QKD should be viewed as a complement to — rather than a replacement for — existing cybersecurity frameworks. Functionally, QKD solves the same problem solved by other key establishment protocols, including the well-known Diffie-Hellman (DH) method and the module-lattice-based key encapsulation mechanism (ML-KEM), the standard recently ratified by the FIPS — but it does it in a fundamentally different way. Like those methods, QKD depends on strong authentication to defend against threats such as man-in-the-middle attacks, where an attacker poses as one of the communicating parties.

Related content
The head of Amazon Web Services’ quantum communication program on the Nobel winners’ influence on her field.

In short, key exchange protocols and authentication mechanisms are different security primitives for solving distinct problems and must be integrated together in a secure communication system.

The challenge, then, is not to give QKD an authentication mechanism but to understand how it can be integrated with other established mechanisms to strengthen the overall security infrastructure. As quantum technologies continue to evolve, it’s important to shift the conversation from skepticism about authentication to consideration of how QKD can be thoughtfully and practically implemented to address today’s and tomorrow’s cybersecurity needs — such as the need to mitigating the “record now, decrypt later” (RNDL) attack (see sidebar).

Understanding the role of authentication in QKD

When discussing authentication in the context of QKD, we focus on the classical digital channel that the parties use to exchange information about their activities on the quantum channel. This isn’t about user authentication methods, such as logging in with passwords or biometrics, but rather about authenticating the communicating entities and the data exchanged. Entity authentication ensures that the parties are who they claim to be; data authentication guarantees that the information received is the same as what was sent by the claimed source. QKD protocols include a classical-communication component that uses both authentication methods to assure the overall security of the interaction.

Entity authentication

Entity authentication is the process by which one party (the "prover") asserts its identity, and another party (the "verifier") validates that assertion. This typically involves a registration step, in which the verifier obtains reliable identification information about the prover, as a prelude to any further authentication activity. The purpose of this step is to establish a “root of trust” or “trust anchor”, ensuring that the verifier has a trusted baseline for future authentications.

Related content
Collaboration will seek to advance the development of a quantum internet.

Several entity authentication methods are in common use, each based on a different type of trust anchor:

  • Public-key-infrastructure (PKI) authentication: In this method, a prover’s certificate is issued by a trusted certificate authority (CA). The verifier relies on this CA, or the root CA in a certificate chain, to establish trust. The certificate acts as the trust anchor that links the prover’s identity to its public key.
  • PGP-/GPG-based (web of trust) authentication: Here, trust is decentralized. A prover’s public key is trusted if it has been vouched for by one or more trusted third parties, such as a mutual acquaintance or a public-key directory. These third parties serve as the trust anchors.
  • Pre-shared-key-based (PSK) authentication: In this case, both the prover and the verifier share a secret key that was exchanged via an offline or other secure out-of-band method. The trust anchor is the method of securely sharing this key a priori, such as a secure courier or another trusted channel.

These trust anchors form the technical backbones of all authentication systems. However, all entity authentication methods are based on a fundamental assumption: the prover is either the only party that holds the critical secret data (e.g., the prover’s private key in PKI or PGP) or the only other party that shares the secret with the verifier (PSK). If this assumption is broken — e.g., the prover's private key is stolen or compromised, or the PSK is leaked — the entire authentication process can fail.

Data authentication

Data authentication, also known as message authentication, ensures both the integrity and authenticity of the transmitted data. This means the data received by the verifier is exactly what the sender sent, and it came from a trusted source. As with entity authentication, the foundation of data authentication is the secure management of secret information shared by the communicating parties.

Related content
Among the ‘first wave’ of scientists to gain a PhD in quantum technology, the senior manager of research science discusses her two-decade-long career journey.

The most common approach to data authentication is symmetric cryptography, where both parties share a secret key. A keyed message authentication code (MAC), such as HMAC or GMAC, is used to compute a unique tag for the transmitted data. This tag allows the receiver to verify that the data hasn’t been altered during transit. The security of this method depends on the collision resistance of the chosen MAC algorithm — that is, the computational infeasibility of finding two or more plaintexts that could yield the same tag — and the confidentiality of the shared key. The authentication tag ensures data integrity, while the secret key guarantees the authenticity of the data origin.

An alternative method uses asymmetric cryptography with digital signatures. In this approach, the sender generates a signature using a private key and the data itself. The receiver, or anyone else, can verify the signature’s authenticity using the sender’s public key. This method provides data integrity through the signature algorithm, and it assures data origin authenticity as long as only the sender holds the private key. In this case, the public key serves as a verifiable link to the sender, ensuring that the signature is valid.

In both the symmetric and the asymmetric approaches, successful data authentication depends on effective entity authentication. Without knowing and trusting the identity of the sender, the verification of the data’s authenticity is compromised. Therefore, the strength of data authentication is closely tied to the integrity of the underlying entity authentication process.

Authentication in QKD

The first quantum cryptography protocol, known as BB84, was developed by Bennett and Brassard in 1984. It remains foundational to many modern QKD technologies, although notable advancements have been made since then.

Related content
New method enables entanglement between vacancy centers tuned to different wavelengths of light.

QKD protocols are unique because they rely on the fundamental principles of quantum physics, which allow for “information-theoretic security.” This is distinct from the security provided by computational complexity. In the quantum model, any attempt to eavesdrop on the key exchange is detectable, providing a layer of security that classical cryptography cannot offer.

QKD relies on an authenticated classical communication channel to ensure the integrity of the data exchanged between parties, but it does not depend on the confidentiality of that classical channel. (This is why RNDL is not an effective attack against QKD). Authentication just guarantees that the entities establishing keys are legitimate, protecting against man-in-the-middle attacks.

Currently, several commercial QKD products are available, many of which implement the original BB84 protocol and its variants. These solutions offer secure key distribution in real-world applications, and they all pair with strong authentication processes to ensure the communication remains secure from start to finish. By integrating both technologies, organizations can build communication infrastructures capable of withstanding both classical and quantum threats.

Authentication in QKD bootstrap: A manageable issue

During the initial bootstrap phase of a QKD system, the authentic classical channel is established using traditional authentication methods based on PKI or PSK. As discussed earlier, all of these methods ultimately rely on the establishment of a trust anchor.

Related content
Automated reasoning and optimizations specific to CPU microarchitectures improve both performance and assurance of correct implementation.

While confidentiality may need to be maintained for an extended period (sometimes decades), authentication is a real-time process. It verifies identity claims and checks data integrity in the moment. Compromising an authentication mechanism at some future point will not affect past verifications. Once an authentication process is successfully completed, the opportunity for an adversary to tamper with it has passed. That is, even if, in the future, a specific authentication mechanism used in QKD is broken by a new technology, QKD keys generated prior to that point are still safe to use, because no adversary can go back in time to compromise past QKD key generation.

This means that the reliance on traditional, non-QKD authentication methods presents an attack opportunity only during the bootstrap phase, which typically lasts just a few minutes. Given that this phase is so short compared to the overall life cycle of a QKD deployment, the potential risks posed by using authentication mechanisms are relatively minor.

Authentication after QKD bootstrap: Not a new issue

Once the bootstrap phase is complete, the QKD devices will have securely established shared keys. These keys can then be used for PSK-based authentication in future communications. In essence, QKD systems can maintain the authenticated classical communication channel by utilizing a small portion of the very keys they generate, ensuring continued secure communication beyond the initial setup phase.

It is important to note that if one of the QKD devices is compromised locally for whatever reason, the entire system’s security could be at risk. However, this is not a unique vulnerability introduced by QKD. Any cryptographic system faces similar challenges when the integrity of an endpoint is compromised. In this respect, QKD is no more susceptible to it than any other cryptographic system.

Overcoming key challenges to QKD’s role in cybersecurity

Up to now we have focused on clarifying the myths about authentication needs in QKD. Next we will discuss several other challenges in using QKD in practice.

Bridging the gap between QKD theory and implementation

While QKD protocols are theoretically secure, there remains a significant gap between theory and real-world implementations. Unlike traditional cryptographic methods, which rely on well-understood algorithms that can be thoroughly reviewed and certified, QKD systems depend on specialized hardware. This introduces complexity, as the process of reviewing and certifying QKD hardware is not yet mature.

Related content
Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

In conventional cryptography, risks like side-channel attacks — which use runtime clues such as memory access patterns or data retrieval times to deduce secrets — are well understood and mitigated through certification processes. QKD systems are following a similar path. The European Telecommunications Standards Institute (ETSI) has made a significant move by introducing the Common Criteria Protection Profile for QKD, the first international effort to create a standardized certification framework for these systems. ISO/IEC has also published standards on security requirements and test and evaluation methods for QKD. These represent crucial steps in building the same level of trust that traditional cryptography enjoys.

Once the certification process is fully established, confidence in QKD’s hardware implementations will continue to grow, enabling the cybersecurity community to embrace QKD as a reliable, cutting-edge solution for secure communication. Until then, the focus remains on advancing the review and certification processes to ensure that these systems meet the highest security standards.

QKD deployment considerations

One of the key challenges in the practical deployment of QKD is securely transporting the keys generated by QKD devices to their intended users. While it’s accepted that QKD is a robust mechanism for distributing keys to the QKD devices themselves, it does not cover the secure delivery of keys from the QKD device to the end user (or key consumer).

QKD diagram.png
A schematic representation of two endpoints — site A and site B — that want to communicate safely. The top line represents the user traffic being protected, and the bottom lines are the channels required to establish secure communication. An important practical consideration is how to transmit a key between a QKD device and an end user within an endpoint.

This issue arises whether the QKD system is deployed within a large intranet or a small local-area network. In both cases, the keys must be transported over a non-QKD system. The standard deployment requirement is that the key delivery from the QKD system to the key consumer occurs “within the same secure site”, and the definition of a “secure site” is up to the system operator.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

The best practice is to make the boundary of the secure site as small as is practical. One extreme option is to remove the need for transporting keys over classical networks entirely, by putting the QKD device and the key user’s computing hardware in the same physical unit. This eliminates the need for traditional network protocols for key transport and realizes the full security benefits of QKD without external dependency. In cases where the extreme option is infeasible or impractical, the secure site should cover only the local QKD system and the intended key consumers.

Conclusion

QKD-generated keys will remain secure even when quantum computers emerge, and communications using these keys are not vulnerable to RNDL attacks. For QKD to reach its full potential, however, the community must collaborate closely with the broader cybersecurity ecosystem, particularly in areas like cryptography and governance, risk, and compliance (GRC). By integrating the insights and frameworks established in these fields, QKD can overcome its current challenges in trust and implementation.

This collective effort is essential to ensure that QKD becomes a reliable and integral part of secure communication systems. As these collaborations deepen, QKD will be well-positioned to enhance existing security frameworks, paving the way for its adoption across industries and applications.

Related content

US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CA, BC, Vancouver
Are you ready to be at the forefront of Agentic AI innovation and redefine the future of communication? Join our dynamic Alexa Connections team as a Sr. Applied Scientist, and lead futuristic initiatives that will shape the next generation of intelligent, conversational experiences. In this role, you'll work at the intersection of disruptive AI technologies and real-world impact, making a difference for millions of customers. You'll collaborate with a team of passionate professionals who are as excited about innovation as you are, and together, you'll push the boundaries of what's possible with Alexa+. As a Sr. Applied Scientist, you'll drive the development of novel algorithms and modeling techniques to advance the state of the art with LLMs and real-time Agentic AI solutions that power our next-generation communication features. You'll work closely with cross-functional teams, including product management, engineering, design, and data, to design and deliver innovative solutions that leverage these AI technologies to enable seamless, intelligent communication experiences. You'll also lead the integration of these advanced AI systems into Alexa's core capabilities, ensuring a seamless and intuitive user experience. Key job responsibilities - Develop new inference and training techniques to improve the performance of Large Language Models for Smart Home control and Automation - Develop robust techniques for synthetic data generation for training large models and maintaining model generalization - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environment, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues - Mentoring junior scientists to improve their skills, knowledge, and their ability to get things done About the team Alexa Connections aspires to make Alexa+ the world’s most trusted connection assistant for getting things done and creating moments of joy. Our vision emphasizes a) Trust as our foundation for becoming a daily habit, knowing our customers have plentiful choices, b) Completion of end-to-end customer journeys, beyond shipping features, and c) Joy through personalized, proactive experiences, that create a memory.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Lead design and implement control algorithms for robot locomotion - Develop behaviors that enable the robot to traverse diverse terrain - Develop methods that seamlessly integrate stability, locomotion, and manipulation tasks - Create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for loco-manipulation - Mentor junior engineer and scientists
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for a Data Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and big-data challenges, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities - Design and deliver big data architectures for experimental and production consumption between scientists and software engineering. - Develop the end-to-end automation of data pipelines, making datasets readily-consumable by science and engineering teams. - Create automated alarming and dashboards to monitor data integrity. - Create and manage capacity and performance plans. - Act as the subject matter expert for the data structure and usage.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!
IN, KA, Bengaluru
The Amazon Smart Vehicles (ASV) science team is seeking a passionate and skilled Applied Scientist with extensive expertise in advanced LLM technologies. This role involves innovating in rapidly evolving areas of AI research, focusing on creating personalized services to enhance drivers' and passengers' experiences. Your work will aim to simplify their lives, keep them informed, entertained, productive, and safe on the road, with direct application to prominent Amazon products. If you have extensive expertise in LLMs, natural language processing, and machine learning, along with experience in high-performing research teams, this could be the perfect opportunity for you. Our dynamic and fast-paced environment demands a high level of independence in decision-making and the ability to drive ambitious research initiatives through to production. You will collaborate closely with other science and engineering teams, as well as business stakeholders, to ensure your contributions are both impactful and delivered with maximum efficiency. Key job responsibilities - Leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI) - Work with talented peers to lead the development of novel algorithms and modeling techniques to advance the state of the art with LLMs - Collaborate with other science and engineering teams as well as business stakeholders to maximize the velocity and impact of your contributions About the team This is an exciting moment to lead in AI research and application. As part of the Amazon Smart Vehicles science team, you have the opportunity to shape the future by enhancing information-driven experiences for Amazon customers around the globe. Your work will directly influence customers through innovative products and services powered by language and multimodal technology!