RecSys: Rajeev Rastogi on three recommendation system challenges

In a keynote address, the Amazon International vice president will discuss recommendations in directed graphs, training models whose target labels change, and using prediction uncertainty to improve model performance.

Rajeev Image 2.jpg
Rajeev Rastogi, vice president of applied science in Amazon’s International Emerging Stores division.

In a keynote address at this year’s ACM Conference on Recommender Systems (RecSys), which starts next week, Rajeev Rastogi, vice president of applied science in Amazon’s International Emerging Stores division, will discuss three problems his organization has faced in its work on recommendation algorithms: recommendations in directed graphs; training machine learning models when target labels change over time; and leveraging estimates of prediction uncertainty to improve models’ accuracy.

“The connections are that these are general techniques that cut across many different recommendation problems,” Rastogi explains. “And these are things that we actually use in practice. They make a difference in the real world.”

Directed graphs

The first problem involves directed graphs, or graphs whose edges describe relationships that run in only one direction.

“Directed graphs have applications in many different domains out there — from citation networks, where an edge U-V indicates paper U cites paper V, or in social networks, where an edge U-V would show that user U follows another user V, and in e-commerce, where an edge U-V indicates that customers bought product U before they bought product V,” Rastogi explains.

Although the problem of exploring directed graphs is general, the researchers in Rastogi’s organization focused on this last case: related-products recommendation, where the goal is to predict what other products might interest a customer who has just made a purchase.

“The interesting part here is that the related-products relationship is actually asymmetric,” Rastogi explains. “If you have, say, two nodes, a phone and a phone case, given a phone, you want to recommend a phone case. But if the customer has bought a phone case, you don't want to recommend a phone, because they most likely already have one.”

Like many graph-based applications, the Amazon team’s solution to the problem of asymmetric related-product recommendation involves graph neural networks (GNNs), in which each node of a graph is embedded in a representational space where geometric relationships between nodes carry information about their relationships in the network. The embedding process is iterative, with each iteration factoring in information about nodes at greater removes, until each node’s embedding carries information about its neighborhood.

“A single embedding space does not have the expressive power to model the asymmetric relationships between nodes in directed graphs,” Rastogi explains. “Something that we borrowed from past work is to represent each node with dual embeddings, and one of our novel contributions is really to learn these dual embeddings in a GNN setting that leverages the entire graph structure.”

BLADE.png
At center is a graph indicating the relationships between cell phones and related products such as a case, a power adaptor, and a screen guard. At left is a schematic illustrating the embedding (vector representation) of node A in a traditional graph neural network (GNN); at right is the dual embedding of A, as both a recommendation target (A-t) and a recommendation source (A-s), in BLADE. From "BLADE: Biased neighborhood sampling based graph neural network for directed graphs".

“Then we had additional techniques, like adaptive sampling,” Rastogi adds. “These vanilla GNNs sample fixed neighborhood sizes for every node. But we found that low-degree nodes” — that is, nodes with few connections to other nodes — “have suboptimal performance when you have fixed neighborhood sizes for every node, because low-degree nodes have sparse connectivity structures. And so less information gets transmitted when you're aggregating information from neighbors and so on.

“So we actually choose to sample larger neighborhoods for low-degree nodes and smaller neighborhoods for high-degree nodes. It's a little bit counterintuitive, but it gives us much better results.”

Delayed feedback

A typical machine learning (ML) model is trained on labeled data, and the model must learn to predict the labels — its training targets — from the data. The second problem Rastogi addresses in his talk is how best to train a model when you know that some of the target labels are going to change in the near future.

“This is, again, a very common problem across many different domains,” Rastogi says. “In recommendations, there can be a time lag of a few days between customers viewing a recommendation and purchasing the product.

“There's a trade-off here: If you use all the training data in real time, some of those more recent training examples may have target labels that are incorrect, because they are going to change over time. On the other hand, if you ignore all the training examples you got in the last five days, then you're missing out on recent data, and your model isn't going to be as good — especially in environments where models need to be retrained frequently.

Delayed feedback.png
An illustration of true negatives, delayed positives and true positives, from "Modelling delayed redemption with importance sampling and pre-redemption engagement".

“Here, what we've done is come up with an importance-sampling strategy that essentially weighs every training example with an importance weight. Let P(X,Y) be the true data distribution, and Q(X,Y) be the data distribution that you observe in the training set. Our importance-sampling strategy uses the ratio P(X,Y) divided by Q(X,Y) as the importance weight.

“Our key innovation centers on techniques to compute these importance weights in new scenarios. One is where we take into account preconversion signals. People tend to do something before they convert; they may add to cart, or they may click on the product to research it before completing the purchase. So we take into account those signals, and that helps us overcome data sparsity.

“But then it makes the computation of importance weights a little bit more complex. If it's very likely that the target label will actually change from 0 — a negative example — to 1 , then the importance weight would be much lower than if the likelihood of the example not changing was very low. Essentially, what you're trying to do is learn from the data the likelihood that the target label is going is change in the future and capture that in the importance weights.”

Prediction uncertainty

Finally, Rastogi says, the third technique he’ll discuss in his talk is the use of uncertainty estimates to improve the accuracy of model predictions.

“ML models typically will return point estimates,” Rastogi explains. “But usually you have a probability distribution. In some cases, you could know there's a 0.5 chance this customer is going buy the product. But in some cases, it could be anywhere between 0.2 and 0.8. What we found is, if you’re able to generate uncertainty estimates for model predictions, we can exploit them to improve model accuracy.

“We trained a binary classifier to predict ad click probability for an ads recommendation application. For every sample in the holdout set, we generated both the model score, which is the probability prediction, and also an uncertainty estimate, which is how certain I am about the predicted probability.

“If I looked at a lot of examples in the holdout set with a model score of 0.5, you would expect that about 50% of them resulted in clicks: that’s the empirical positivity rate. If it were 0.8, then the empirical positivity rate should be around 80%.

“But what we found is that as the variance of the model score increased, the empirical positivity rates went down. If I have a score of 0.8, I could say, well, it's between 0.79 and 0.81, which corresponds to a low variance. Or I could say, it's between 0.65 and 0.95, which indicates a high variance. We found that for the same model score, as the confidence intervals became larger, the empirical positivity rate started dropping.

“That has implications on selecting the decision boundary for binary classifiers. Traditionally, binary classifiers used a single threshold on model scores. But now, since the empirical positivity rate depends on both the model score and the uncertainty estimate, just selecting a single threshold value turns out to be suboptimal. If we select multiple thresholds, one per uncertainty level, we found that we can get much higher recall for a given precision.”

Members of Rastogi’s organization are currently writing a paper on their prediction uncertainty work — but the method is already in production.

“There are a lot of things that people publish papers about, and they're forgotten and never really used,” Rastogi says. “Coming from Amazon, we do science that actually makes a difference to customers and solves customer pain points. These are three examples of doing customer-obsessed science that actually makes a difference in the real world.”

Related content

US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Research Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Research Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Research Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
US, NY, New York
Amazon is looking for an Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As an Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Applied Scientist you will: - Set the scientific strategic vision for the team. You - - lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is central to Twitch's decision-making process, and data scientists are a critical component to evangelize data-driven decision making in all of our operations. As a data scientist at Twitch, you will be on the ground floor with your team, shaping the way product performance is measured, defining what questions should be asked, and scaling analytics methods and tools to support our growing business, leading the way for high quality, high velocity decisions for your team. For this role, we're looking for an experienced product data scientist who will help develop the strategy and evaluate/improve product initiatives within our Creator product team. You will be responsible to define and track KPIs, design experiments, evaluate A/B tests, implement data instrumentation, and inform on investment. Our ideal candidate is a "full-stack" data powerhouse who uses data to drive decision making to make the best products for our creators and their communities. Your input will be core to decision making across all major product strategies and initiatives that our team builds. You will work closely with product managers, technical program managers, engineering, data scientists, and organization leadership within and outside of the Creator organization. You Will - Inform product strategies by defining and updating core metrics for each initiative - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Evaluate and forecast impact of product features on creators, viewers, and the entire Twitch ecosystem - Design A/B experiments to drive product direction with iterative innovation and measurement - Drive the team's analysis roadmap and prioritize the most valuable projects - Tackle complex and ambiguous analytic projects, resolve ambiguity and accurately identify the trade-offs between speed and quality and apply or route work as necessary - Dive deep into the data to understand how creator and viewer behaviors change with the evolution of our product - Act as our team's thought leader on best practices and move towards long-term vision of sustainable and thriving data processes - Own data collection and product instrumentation implementation and quality assurance - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount About the team Twitch is all about community, and our Community Team is a core pillar of what makes Twitch, Twitch. Teams within Community are responsible for a myriad of product areas impacting the creator, viewer, and moderator journeys on our platform. As a member of our team, you'll build solutions that improve g the experience of millions of daily active users on our platform and create tools that keep both streamers and viewers engaged and connected on our platform.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, Santa Clara
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of structure-aware next generation systems that can reason over heterogenous data assets and reduce hallucination making AI systems reliable. The team develops AI systems that utilize structure exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. To accomplish this goal we are seeking scientists with expertise in large language models, graph machine learning, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for graph retrieval augmented generation, agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. A day in the life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Santa Clara
Are you passionate about applying automated reasoning and program analysis to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. We’re looking for an Applied Scientist to help strengthen our customers' security with automation for managed controls. AWS Identity provides the bedrock for secure and continuous access to all AWS services. By quickly connecting millions of users, across the world we empower organizations and enterprises to accelerate their cloud and digital transformation. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Key job responsibilities * Interact with various teams to develop an understanding of their security and safety requirements. * Apply the acquired knowledge to build tools and algorithms, find problems, or show the absence of security/safety problems. * Implement these capabilities through the use of Automated Reasoning and various concepts from programming languages. * Perform analysis of the customer systems using tools developed in-house or externally provided * Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.