RecSys: Rajeev Rastogi on three recommendation system challenges

In a keynote address, the Amazon International vice president will discuss recommendations in directed graphs, training models whose target labels change, and using prediction uncertainty to improve model performance.

Rajeev Image 2.jpg
Rajeev Rastogi, vice president of applied science in Amazon’s International Emerging Stores division.

In a keynote address at this year’s ACM Conference on Recommender Systems (RecSys), which starts next week, Rajeev Rastogi, vice president of applied science in Amazon’s International Emerging Stores division, will discuss three problems his organization has faced in its work on recommendation algorithms: recommendations in directed graphs; training machine learning models when target labels change over time; and leveraging estimates of prediction uncertainty to improve models’ accuracy.

“The connections are that these are general techniques that cut across many different recommendation problems,” Rastogi explains. “And these are things that we actually use in practice. They make a difference in the real world.”

Directed graphs

The first problem involves directed graphs, or graphs whose edges describe relationships that run in only one direction.

“Directed graphs have applications in many different domains out there — from citation networks, where an edge U-V indicates paper U cites paper V, or in social networks, where an edge U-V would show that user U follows another user V, and in e-commerce, where an edge U-V indicates that customers bought product U before they bought product V,” Rastogi explains.

Although the problem of exploring directed graphs is general, the researchers in Rastogi’s organization focused on this last case: related-products recommendation, where the goal is to predict what other products might interest a customer who has just made a purchase.

“The interesting part here is that the related-products relationship is actually asymmetric,” Rastogi explains. “If you have, say, two nodes, a phone and a phone case, given a phone, you want to recommend a phone case. But if the customer has bought a phone case, you don't want to recommend a phone, because they most likely already have one.”

Like many graph-based applications, the Amazon team’s solution to the problem of asymmetric related-product recommendation involves graph neural networks (GNNs), in which each node of a graph is embedded in a representational space where geometric relationships between nodes carry information about their relationships in the network. The embedding process is iterative, with each iteration factoring in information about nodes at greater removes, until each node’s embedding carries information about its neighborhood.

“A single embedding space does not have the expressive power to model the asymmetric relationships between nodes in directed graphs,” Rastogi explains. “Something that we borrowed from past work is to represent each node with dual embeddings, and one of our novel contributions is really to learn these dual embeddings in a GNN setting that leverages the entire graph structure.”

BLADE.png
At center is a graph indicating the relationships between cell phones and related products such as a case, a power adaptor, and a screen guard. At left is a schematic illustrating the embedding (vector representation) of node A in a traditional graph neural network (GNN); at right is the dual embedding of A, as both a recommendation target (A-t) and a recommendation source (A-s), in BLADE. From "BLADE: Biased neighborhood sampling based graph neural network for directed graphs".

“Then we had additional techniques, like adaptive sampling,” Rastogi adds. “These vanilla GNNs sample fixed neighborhood sizes for every node. But we found that low-degree nodes” — that is, nodes with few connections to other nodes — “have suboptimal performance when you have fixed neighborhood sizes for every node, because low-degree nodes have sparse connectivity structures. And so less information gets transmitted when you're aggregating information from neighbors and so on.

“So we actually choose to sample larger neighborhoods for low-degree nodes and smaller neighborhoods for high-degree nodes. It's a little bit counterintuitive, but it gives us much better results.”

Delayed feedback

A typical machine learning (ML) model is trained on labeled data, and the model must learn to predict the labels — its training targets — from the data. The second problem Rastogi addresses in his talk is how best to train a model when you know that some of the target labels are going to change in the near future.

“This is, again, a very common problem across many different domains,” Rastogi says. “In recommendations, there can be a time lag of a few days between customers viewing a recommendation and purchasing the product.

“There's a trade-off here: If you use all the training data in real time, some of those more recent training examples may have target labels that are incorrect, because they are going to change over time. On the other hand, if you ignore all the training examples you got in the last five days, then you're missing out on recent data, and your model isn't going to be as good — especially in environments where models need to be retrained frequently.

Delayed feedback.png
An illustration of true negatives, delayed positives and true positives, from "Modelling delayed redemption with importance sampling and pre-redemption engagement".

“Here, what we've done is come up with an importance-sampling strategy that essentially weighs every training example with an importance weight. Let P(X,Y) be the true data distribution, and Q(X,Y) be the data distribution that you observe in the training set. Our importance-sampling strategy uses the ratio P(X,Y) divided by Q(X,Y) as the importance weight.

“Our key innovation centers on techniques to compute these importance weights in new scenarios. One is where we take into account preconversion signals. People tend to do something before they convert; they may add to cart, or they may click on the product to research it before completing the purchase. So we take into account those signals, and that helps us overcome data sparsity.

“But then it makes the computation of importance weights a little bit more complex. If it's very likely that the target label will actually change from 0 — a negative example — to 1 , then the importance weight would be much lower than if the likelihood of the example not changing was very low. Essentially, what you're trying to do is learn from the data the likelihood that the target label is going is change in the future and capture that in the importance weights.”

Prediction uncertainty

Finally, Rastogi says, the third technique he’ll discuss in his talk is the use of uncertainty estimates to improve the accuracy of model predictions.

“ML models typically will return point estimates,” Rastogi explains. “But usually you have a probability distribution. In some cases, you could know there's a 0.5 chance this customer is going buy the product. But in some cases, it could be anywhere between 0.2 and 0.8. What we found is, if you’re able to generate uncertainty estimates for model predictions, we can exploit them to improve model accuracy.

“We trained a binary classifier to predict ad click probability for an ads recommendation application. For every sample in the holdout set, we generated both the model score, which is the probability prediction, and also an uncertainty estimate, which is how certain I am about the predicted probability.

“If I looked at a lot of examples in the holdout set with a model score of 0.5, you would expect that about 50% of them resulted in clicks: that’s the empirical positivity rate. If it were 0.8, then the empirical positivity rate should be around 80%.

“But what we found is that as the variance of the model score increased, the empirical positivity rates went down. If I have a score of 0.8, I could say, well, it's between 0.79 and 0.81, which corresponds to a low variance. Or I could say, it's between 0.65 and 0.95, which indicates a high variance. We found that for the same model score, as the confidence intervals became larger, the empirical positivity rate started dropping.

“That has implications on selecting the decision boundary for binary classifiers. Traditionally, binary classifiers used a single threshold on model scores. But now, since the empirical positivity rate depends on both the model score and the uncertainty estimate, just selecting a single threshold value turns out to be suboptimal. If we select multiple thresholds, one per uncertainty level, we found that we can get much higher recall for a given precision.”

Members of Rastogi’s organization are currently writing a paper on their prediction uncertainty work — but the method is already in production.

“There are a lot of things that people publish papers about, and they're forgotten and never really used,” Rastogi says. “Coming from Amazon, we do science that actually makes a difference to customers and solves customer pain points. These are three examples of doing customer-obsessed science that actually makes a difference in the real world.”

Related content

US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, development, evaluate and deploy innovative and highly scalable models for predictive learning Research and implement novel machine learning and statistical approaches Work closely with software engineering teams to drive real-time model implementations and new feature creations Work closely with business owners and operations staff to optimize various business operations Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Mentor other scientists and engineers in the use of ML techniques
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Control Stack Manager to join our growing software group. You will lead a team of interdisciplinary scientists and software engineers, focused on developing research software and infrastructure to support the development and operation of scalable fault-tolerant quantum computers. You will interface directly with our experimental physics and control hardware teams to develop and drive a vision for the experimental quantum computing software-hardware interface. The ideal candidate will (1) have strong technical breadth across low-level programming, scientific instrumentation, and computer architecture, (2) have excellent communication skills and a proven track record of collaborating with scientists and hardware engineers, and (3) be excited about empowering and growing a team of scientists and software engineers. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. Key job responsibilities - Develop a technical vision for the quantum software-hardware interface in collaboration w/ senior engineers - Collaborate effectively with science and hardware teams to derive software needs and priorities - Own resource allocation and planning activities for your team to meet the needs of (internal) customers - Be comfortable “getting your hands dirty” (i.e. diving deep into architecture, metrics, and implementation) - Regularly provide technical evaluation and feedback to your reports (i.e. via code review, design docs, etc.) - Drive hiring activities for your team — develop growth plans, source candidates, and design interview loops - Coach and empower your employees to become better engineers, scientists, and communicators We are looking for candidates with strong engineering principles, a bias for action, superior problem-solving, and excellent communication skills. Thriving in ambiguity and leading with empathy are essential. As a manager embedded in a broader research science organization, you will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The majority of your time will be spent orchestrating, coaching, and growing the control stack team at the Center for Quantum Computing. This requires collaborating with other science and software teams and working backwards from the needs of our science staff in the context of our larger experimental roadmap. You will translate science needs and priorities into software project proposals and resource allocations. Once project proposals have been accepted, you will support and empower your team to deliver these projects on time while maintaining high standards of engineering excellence. Because many high-level experimental goals have cross-cutting requirements, you’ll need to stay in sync with partner science and software teams. About the team You will be joining the software group within the Center of Quantum Computing. Our team is comprised of scientists and software engineers who are building scalable software that enables quantum computing technologies.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video recommendation systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation Science team owns science solution to power personalized experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. The ideal candidate would have experience in audio processing, natural language understanding and machine learning. Familiarity with machine translation, foundational models, and speech synthesis will be a plus. As an Applied Scientist, you should be a strong communicator, able to describe scientifically rigorous work to business stakeholders of varying levels of technical sophistication. You will closely partner with the solution development teams, and should be intensely curious about how the research is moving the needle for business. Strong inter-personal and mentoring skills to develop applied science talent in the team is another important requirement.