Responsible AI in the generative era

Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

In recent years, and even recent months, there have been rapid and dramatic advances in the technology known as generative AI. Generative AI models are trained on inconceivably massive collections of text, code, images, and other rich data. They are now able to produce, on demand, coherent and compelling stories, news summaries, poems, lyrics, paintings, and programs. The potential practical uses of generative AI are only just beginning to be understood but are likely to be manifold and revolutionary and to include writing aids, creative content production and refinement, personal assistants, copywriting, code generation, and much more.

Kearns with caption
Michael Kearns, a professor of computer and information science at the University of Pennsylvania and an Amazon Scholar.

There is thus considerable excitement about the transformations and new opportunities that generative AI may bring. There are also understandable concerns — some of them new twists on those of traditional responsible AI (such as fairness and privacy) and some of them genuinely new (such as the mimicry of artistic or literary styles). In this essay, I survey these concerns and how they might be addressed over time.

I will focus primarily on technical approaches to the risks, while acknowledging that social, legal, regulatory, and policy mechanisms will also have important roles to play. At Amazon, our hope is that such a balanced approach can significantly reduce the risks, while still preserving much of the excitement and usefulness of generative AI.

What is generative AI?

To understand what generative AI is and how it works, it is helpful to begin with the example of large language models (LLMs). Imagine the thought experiment in which we start with some sentence fragment like Once upon a time, there was a great ..., and we poll people on what word they would add next. Some might say wizard, others might say queen, monster, and so on. We would also expect that given the fairy tale nature of the fragment, words such as apricot or fork would be rather unlikely suggestions.

Related content
Model using ASR hypotheses as extra inputs reduces word error rate of human transcriptions by almost 11%.

If we poll a large enough population, a probability distribution over next words would begin to emerge. We could then randomly pick a word from that distribution (say wizard), and now our sequence would be one word longer — Once upon a time, there was a great wizard ... — and we could again poll for the next word. In this manner we could theoretically generate entire stories, and if we restarted the whole process, the crowd would produce an entirely different narrative due to the inherent randomness.

Dramatic advances in machine learning have effectively made this thought experiment a reality. But instead of polling crowds of people, we use a model to predict likely next words, one trained on a massive collection of documents — public collections of fiction and nonfiction, Wikipedia entries and news articles, transcripts of human dialogue, open-source code, and much more.

LLM objective.gif
An example of how a language model uses context to predict the next word in a sentence.

If the training data contains enough sentences beginning Once upon a time, there was a great …, it will be easy to sample plausible next words for our initial fragment. But LLMs can generalize and create as well, and not always in ways that humans might expect. The model might generate Once upon a time, there was a great storm based on occurrences of tremendous storm in the training data, combined with the learned synonymy of great and tremendous. This completion can happen despite great storm never appearing verbatim in the training data and despite the completions more expected by humans (like wizard and queen).

The resulting models are just as complex as their training data, often described by hundreds of billions of numbers (or parameters, in machine learning parlance), hence the “large” in LLM. LLMs have become so good that not only do they consistently generate grammatically correct text, but they create content that is coherent and often compelling, matching the tone and style of the fragments they were given (known as prompts). Start them with a fairy tale beginning, and they generate fairy tales; give them what seems to be the start of a news article, and they write a news-like article. The latest LLMs can even follow instructions rather than simply extend a prompt, as in Write lyrics about the Philadelphia Eagles to the tune of the Beatles song “Get Back”.

Related content
Models that map spoken language to objects in an image would make it easier for customers to communicate with multimodal devices.

Generative AI isn’t limited to text, and many models combine language and images, as in Create a painting of a skateboarding cat in the style of Andy Warhol. The techniques for building such systems are a bit more complex than for LLMs and involve learning a model of proximity between text and images, which can be done using data sources like captioned photos. If there are enough images containing cats that have the word cat in the caption, the model will capture the proximity between the word and pictures of cats.

The examples above suggest that generative AI is a form of entertainment, but many potential practical uses are also beginning to emerge, including generative AI as a writing tool (Shorten the following paragraphs and improve their grammar), for productivity (Extract the action items from this meeting transcript), for creative content (Propose logo designs for a startup building a dog-walking app), for simulating focus groups (Which of the following two product descriptions would Florida retirees find more appealing?), for programming (Give me a code snippet to sort a list of numbers), and many others.

So the excitement over the current and potential applications of generative AI is palpable and growing. But generative AI also gives rise to some new risks and challenges in the responsible use of AI and machine learning. And the likely eventual ubiquity of generative models in everyday life and work amplifies the stakes in addressing these concerns thoughtfully and effectively.

So what’s the problem?

The “generative” in generative AI refers to the fact that the technology can produce open-ended content that varies with repeated tries. This is in contrast to more traditional uses of machine learning, which typically solve very focused and narrow prediction problems.

For example, consider training a model for consumer lending that predicts whether an applicant would successfully repay a loan. Such a model might be trained using the lender’s data on past loans, each record containing applicant information (work history, financial information such as income, savings, and credit score, and educational background) along with whether the loan was repaid or defaulted.

Related content
NSF deputy assistant director Erwin Gianchandani on the challenges addressed by funded projects.

The typical goal would be to train a model that was as accurate as possible in predicting payment/default and then apply it to future applications to guide or make lending decisions. Such a model makes only lending outcome predictions and cannot generate fairy tales, improve grammar, produce whimsical images, write code, and so on. Compared to generative AI, it is indeed a very narrow and limited model.

But the very limitations also make the application of certain dimensions of responsible AI much more manageable. Consider the goal of making our lending model fair, which would typically be taken to mean the absence of demographic bias. For example, we might want to make sure that the error rate of the predictions of our model (and it generally will make errors, since even human loan officers are imperfect in predicting who will repay) is approximately equal on men and women. Or we might more specifically ask that the false-rejection rate — the frequency with which the model predicts default by an applicant who is in fact creditworthy — be the same across gender groups.

Once armed with this definition of fairness, we can seek to enforce it in the training process. In other words, instead of finding a model that minimizes the overall error rate, we find one that does so under the additional condition that the false-rejection rates on men and women are approximately equal (say, within 1% of each other). We might also want to apply the same notion of fairness to other demographic properties (such as young, middle aged, and elderly). But the point is that we can actually give reasonable and targeted definitions of fairness and develop training algorithms that enforce them.

It is also easy to audit a given model for its adherence to such notions of fairness (for instance, by estimating the error rates on both male and female applicants). Finally, when the predictive task is so targeted, we have much more control over the training data: we train on historical lending decisions only, and not on arbitrarily rich troves of general language, image, and code data.

Now consider the problem of making sure an LLM is fair. What might we even mean by this? Well, taking a cue from our lending model, we might ask that the LLM treat men and women equally. For instance, consider a prompt like Dr. Hanson studied the patient’s chart carefully, and then … . In service of fairness, we might ask that in the completions generated by an LLM, Dr. Hanson be assigned male and female pronouns with roughly equal frequency. We might argue that to do otherwise perpetuates the stereotype that doctors are typically male.

Related content
Method significantly reduces bias while maintaining comparable performance on machine learning tasks.

But then should we not also do this for mentions of nurses, firefighters, accountants, pilots, carpenters, attorneys, and professors? It’s clear that measuring just this one narrow notion of fairness will quickly become unwieldy. And it isn’t even obvious in what contexts it should be enforced. What if the prompt described Dr. Hanson as having a beard? What about the Women’s National Basketball Association (WNBA)? Should mention of a WNBA player in a prompt elicit male pronouns half the time?

Defining fairness for LLMs is even murkier than we suggest above, again because of the open-ended content they generate. Let’s turn from pronoun choices to tone. What if an LLM, when generating content about a woman, uses an ever-so-slightly more negative tone (in choice of words and level of enthusiasm) than when generating content about a man? Again, even detecting and quantifying such differences would be a very challenging technical problem. The field of sentiment analysis in natural-language processing might suggest some possibilities, but currently, it focuses on much coarser distinctions in narrower settings, such as distinguishing positive from negative sentiment in business news articles about particular corporations.

So one of the prices we pay for the rich, creative, open-ended content that generative AI can produce is that it becomes commensurately harder (compared to traditional predictive ML) to define, measure, and enforce fairness.

From fairness to privacy

In a similar vein, let’s consider privacy concerns. It is of course important that a consumer lending model not leak information about the financial or other data of the individual applicants in the training data. (One way this can happen is if model predictions are accompanied by confidence scores; if the model expresses 100% confidence that a loan application will default, it’s likely because that application, with a default outcome, was in the training data.) For this kind of traditional, more narrow ML, there are now techniques for mitigating such leaks by making sure model outputs are not overly dependent on any particular piece of training data.

Related content
Calibrating noise addition to word density in the embedding space improves utility of privacy-protected text.

But the open-ended nature of generative AI broadens the set of concerns from verbatim leaks of training data to more subtle copying phenomena. For example, if a programmer has written some code using certain variable names and then asks an LLM for help writing a subroutine, the LLM may generate code from its training data, but with the original variable names replaced with those chosen by the programmer. So the generated code is not literally in the training data but is different only in a cosmetic way.

There are defenses against these challenges, including curation of training data to exclude private information, and techniques to detect similarity of code passages. But more subtle forms of replication are also possible, and as I discuss below, this eventually bleeds into settings where generative AI reproduces the “style” of content in its training data.

And while traditional ML has begun developing techniques for explaining the decisions or predictions of trained models, they don’t always transfer to generative AI, in part because current generative models sometimes produce content that simply cannot be explained (such as scientific citations that don’t exist, something I’ll discuss shortly).

The special challenges of responsible generative AI

So the usual concerns of responsible AI become more difficult for generative AI. But generative AI also gives rise to challenges that simply don’t exist for predictive models that are more narrow. Let’s consider some of these.

Toxicity. A primary concern with generative AI is the possibility of generating content (whether it be text, images, or other modalities) that is offensive, disturbing, or otherwise inappropriate. Once again, it is hard to even define and scope the problem. The subjectivity involved in determining what constitutes toxic content is an additional challenge, and the boundary between restricting toxic content and censorship may be murky and context- and culture-dependent. Should quotations that would be considered offensive out of context be suppressed if they are clearly labeled as quotations? What about opinions that may be offensive to some users but are clearly labeled as opinions? Technical challenges include offensive content that may be worded in a very subtle or indirect fashion, without the use of obviously inflammatory language.

Related content
Prompt engineering enables researchers to generate customized training examples for lightweight “student” models.

Hallucinations. Considering the next-word distribution sampling employed by LLMs, it is perhaps not surprising that in more objective or factual use cases, LLMs are susceptible to what are sometimes called hallucinations — assertions or claims that sound plausible but are verifiably incorrect. For example, a common phenomenon with current LLMs is creating nonexistent scientific citations. If one of these LLMs is prompted with the request Tell me about some papers by Michael Kearns, it is not actually searching for legitimate citations but generating ones from the distribution of words associated with that author. The result will be realistic titles and topics in the area of machine learning, but not real articles, and they may include plausible coauthors but not actual ones.

In a similar vein, prompts for financial news stories result not in a search of (say) Wall Street Journal articles but news articles fabricated by the LLM using the lexicon of finance. Note that in our fairy tale generation scenario, this kind of creativity was harmless and even desirable. But current LLMs have no levers that let users differentiate between “creativity on” and “creativity off” use cases.

Related content
Combining contrastive training and selection of hard negative examples establishes new benchmarks.

Intellectual property. A problem with early LLMs was their tendency to occasionally produce text or code passages that were verbatim regurgitations of parts of their training data, resulting in privacy and other concerns. But even improvements in this regard have not prevented reproductions of training content that are more ambiguous and nuanced. Consider the aforementioned prompt for a multimodal generative model Create a painting of a skateboarding cat in the style of Andy Warhol. If the model is able to do so in a convincing yet still original manner because it was trained on actual Warhol images, objections to such mimicry may arise.

Plagiarism and cheating. The creative capabilities of generative AI give rise to worries that it will be used to write college essays, writing samples for job applications, and other forms of cheating or illicit copying. Debates on this topic are happening at universities and many other institutions, and attitudes vary widely. Some are in favor of explicitly forbidding any use of generative AI in settings where content is being graded or evaluated, while others argue that educational practices must adapt to, and even embrace, the new technology. But the underlying challenge of verifying that a given piece of content was authored by a person is likely to present concerns in many contexts.

Disruption of the nature of work. The proficiency with which generative AI is able to create compelling text and images, perform well on standardized tests, write entire articles on given topics, and successfully summarize or improve the grammar of provided articles has created some anxiety that some professions may be replaced or seriously disrupted by the technology. While this may be premature, it does seem that generative AI will have a transformative effect on many aspects of work, allowing many tasks previously beyond automation to be delegated to machines.

What can we do?

The challenges listed above may seem daunting, in part because of how unfamiliar they are compared to those of previous generations of AI. But as technologists and society learn more about generative AI and its uses and limitations, new science and new policies are already being created to address those challenges.

For toxicity and fairness, careful curation of training data can provide some improvements. After all, if the data doesn’t contain any offensive or biased words or phrases, an LLM simply won’t be able to generate them. But this approach requires that we identify those offensive phrases in advance and are certain that there are absolutely no contexts in which we would want them in the output. Use-case-specific testing can also help address fairness concerns — for instance, before generative AI is used in high-risk domains such as consumer lending, the model could be tested for fairness for that particular application, much as we might do for more narrow predictive models.

Related content
Amazon Visiting Academic Barbara Poblete helps to build safer, more-diverse online communities — and to aid disaster response.

For less targeted notions of toxicity, a natural approach is to train what we might call guardrail models that detect and filter out unwanted content in the training data, in input prompts, and in generated outputs. Such models require human-annotated training data in which varying types and degrees of toxicity or bias are identified, which the model can generalize from. In general, it is easier to control the output of a generative model than it is to curate the training data and prompts, given the extreme generality of the tasks we intend to address.

For the challenge of producing high-fidelity content free of hallucinations, an important first step is to educate users about how generative AI actually works, so there is no expectation that the citations or news-like stories produced are always genuine or factually correct. Indeed, some current LLMs, when pressed on their inability to quote actual citations, will tell the user that they are just language models that don’t verify their content with external sources. Such disclaimers should be more frequent and clear. And the specific case of hallucinated citations could be mitigated by augmenting LLMs with independent, verified citation databases and similar sources, using approaches such as retrieval-augmented generation. Another nascent but intriguing approach is to develop methods for attributing generated outputs to particular pieces of training data, allowing users to assess the validity of those sources. This could help with explainability as well.

Concerns around intellectual property are likely to be addressed over time by a mixture of technology, policy, and legal mechanisms. In the near term, science is beginning to emerge around various notions of model disgorgement, in which protected content or its effects on generative outputs are reduced or removed. One technology that might eventually prove relevant is differential privacy, in which a model is trained in a way that ensures that any particular piece of training data has negligible effects on the outputs the model subsequently produces.

Related content
By exploiting consistencies across components of ensemble classifiers, a new approach reduces data requirements by up to 89%.

Another approach is so-called sharding approaches, which divide the training data into smaller portions on which separate submodels are trained; the submodels are then combined to form the overall model. In order to undo the effects of any particular item of data on the overall model, we need only remove it from its shard and retrain that submodel, rather than retraining the entire model (which for generative AI would be sufficiently expensive as to be prohibitive).

Finally, we can consider filtering or blocking approaches, where before presentation to the user, generated content is explicitly compared to protected content in the training data or elsewhere and suppressed (or replaced) if it is too similar. Limiting the number of times any specific piece of content appears in the training data also proves helpful in reducing verbatim outputs.

Some interesting approaches to discouraging cheating using generative AI are already under development. One is to simply train a model to detect whether a given (say) text was produced by a human or by a generative model. A potential drawback is that this creates an arms race between detection models and generative AI, and since the purpose of generative AI is to produce high-quality content plausibly generated by a human, it’s not clear that detection methods will succeed in the long run.

An intriguing alternative is watermarking or fingerprinting approaches that would be implemented by the developers of generative models themselves. For example, since at each step LLMs are drawing from the distribution over the next word given the text so far, we can divide the candidate words into “red” and “green” lists that are roughly 50% of the probability each; then we can have the LLM draw only from the green list. Since the words on the green list are not known to users, the likelihood that a human would produce a 10-word sentence that also drew only from the green lists is ½ raised to the 10th power, which is only about 0.0009. In this way we can view all-green content as providing a virtual proof of LLM generation. Note that the LLM developers would need to provide such proofs or certificates as part of their service offering.

LLM watermarking.AI.gif
At each step, the model secretly divides the possible next words into green and red lists. The next word is then sampled only from the green list.
LLM watermarking.human.gif
A human generating a sentence is unaware of the division into green and red lists and is thus very likely to choose a sequence that mixes green and red words. Since, on long sentences, the likelihood of a human choosing an all-green sequence is vanishingly small, we can view all-green sentences as containing a proof they were generated by AI.

Disruption to work as we know it does not have any obvious technical defenses, and opinions vary widely on where things will settle. Clearly, generative AI could be an effective productivity tool in many professional settings, and this will at a minimum alter the current division of labor between humans and machines. It’s also possible that the technology will open up existing occupations to a wider community (a recent and culturally specific but not entirely ludicrous quip on social media was “English is the new programming language”, a nod to LLM code generation abilities) or even create new forms of employment, such as prompt engineer (a topic with its own Wikipedia entry, created in just February of this year).

But perhaps the greatest defense against concerns over generative AI may come from the eventual specialization of use cases. Right now, generative AI is being treated as a fascinating, open-ended playground in which our expectations and goals are unclear. As we have discussed, this open-endedness and the plethora of possible uses are major sources of the challenges to responsible AI I have outlined.

Related content
Technique that mixes public and private training data can meet differential-privacy criteria while cutting error increase by 60%-70%.

But soon more applied and focused uses will emerge, like some of those I suggested earlier. For instance, consider using an LLM as a virtual focus group — creating prompts that describe hypothetical individuals and their demographic properties (age, gender, occupation, location, etc.) and then asking the LLM which of two described products they might prefer.

In this application, we might worry much less about censoring content and much more about removing any even remotely toxic output. And we might choose not to eradicate the correlations between gender and the affinity for certain products in service of fairness, since such correlations are valuable to the marketer. The point is that the more specific our goals for generative AI are, the easier it is to make sensible context-dependent choices; our choices become more fraught and difficult when our expectations are vague.

Finally, we note that end user education and training will play a crucial role in the productive and safe use of generative AI. As the potential uses and harms of generative AI become better and more widely understood, users will augment some of the defenses I have outlined above with their own common sense.

Conclusion

Generative AI has stoked both legitimate enthusiasm and legitimate fears. I have attempted to partially survey the landscape of concerns and to propose forward-looking approaches for addressing them. It should be emphasized that addressing responsible-AI risks in the generative age will be an iterative process: there will be no “getting it right” once and for all. This landscape is sure to shift, with changes to both the technology and our attitudes toward it; the only constant will be the necessity of balancing the enthusiasm with practical and effective checks on the concerns.

Related content

US, CA, Santa Clara
AWS AI is looking for passionate, talented, and inventive Research Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, VA, Herndon
Machine learning (ML) has been strategic to Amazon from the early years. We are pioneers in areas such as recommendation engines, product search, eCommerce fraud detection, and large-scale optimization of fulfillment center operations. The Generative AI team helps AWS customers accelerate the use of Generative AI to solve business and operational challenges and promote innovation in their organization. As an applied scientist, you are proficient in designing and developing advanced ML models to solve diverse challenges and opportunities. You will be working with terabytes of text, images, and other types of data to solve real-world problems. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for talented scientists capable of applying ML algorithms and cutting-edge deep learning (DL) and reinforcement learning approaches to areas such as drug discovery, customer segmentation, fraud prevention, capacity planning, predictive maintenance, pricing optimization, call center analytics, player pose estimation, event detection, and virtual assistant among others. Key job responsibilities The primary responsibilities of this role are to: • Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries • Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them • Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Our team's mission is to improve Shopping experience for customers interacting with Amazon devices via voice. We research and develop advanced state-of-the-art speech and language modeling technologies. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. Key job responsibilities We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech and Language technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for Speech and Language applications. * Participate in research activities including the application and evaluation of Speech and Language techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists.
CN, 31, Shanghai
The AWS Shanghai AI Lab is looking for a passionate, talented, and inventive staff in all AI domains with a strong machine learning background as an Applied Scientist. Founded in 2018, the Shanghai Lab has been an innovation center of for long-term research projects across domains as machine learning, computer vision, natural language processing, and open-source AI system. Meanwhile, these incubated projects power products across various AWS services. As part of the lablet, you will take a leadership role and join a vibrant team with a diverse set of expertise in both machine learning and applicational domains. You will work on state-of-the-art solutions on fundamental research problems with other world-class scientists and engineers in AWS around the globe and across the boarders. You will have the responsibility to design and innovate solutions to our customers. You will build models to tame large amount of data, achieve industry-level scalability and efficiency, and along the way rapidly grow and build the team.
US, WA, Bellevue
Amazon is looking for an outstanding Senior Economist to help build next generation selection/assortment systems. On the Specialized Selection team within the Supply Chain Optimization Technologies (SCOT) organization, we own the selection to determine which products Amazon offers in our fastest delivery programs. We build tools and systems that enable our partners and business owners to scale themselves by leveraging our problem domain expertise, focusing instead on introspecting our outputs and iteratively helping us improve our ML models rather than hand-managing their assortment. We partner closely with our business stakeholders as we work to develop state-of-the-art, scalable, automated selection. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including supervised and unsupervised machine learning, non-convex optimization, causal inference, natural language processing, linear programming, reinforcement learning, and other forecast algorithms. Some critical research areas in our space include modeling substitutability between similar products, incorporating basket awareness and complementarity-aware logic, measuring speed sensitivity of products, modeling network capacity constraints, and supply and demand forecasting. We're looking for a candidate with a background in experiment design and causal analysis to lead studies related to selection and speed. Potential projects include understanding the short-term and long-term customer impact of assortment changes across different speed. As an Senior Economist, you'll build econometric models using our world-class data systems and apply economic theory to solve business problems in a fast-moving environment. You will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. To be successful in this role, you'll need to communicate effectively with product and tech teams, and translate data-driven findings into actionable insights. You'll thrive if you enjoy tackling ambiguous challenges using the economics toolkit and identifying and solving problems at scale. We have a supportive, fast-paced team culture, and we prioritize learning, growth, and helping each other continuously raise the bar. Key job responsibilities - Lead data-driven econometric studies to create future business opportunities - Consult with stakeholders in Selection and other teams to help solve existing business challenges - Independently identify and pursue new opportunities to leverage economic insights - Advise senior leaders and collaborate with other scientists to drive innovation - Support innovative delivery program growth worldwide - Write business and technical documents communicating business context, methods, and results to business leadership and other scientists - Serve as a technical lead and mentor for junior scientists, ensuring a high science bar - Serve as a technical reviewer for our team and related teams, including document and code reviews
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing the design of microwave components for cryogenic environments. Working alongside other scientists and engineers, you will design and validate hardware performing microwave signal conditioning at cryogenic temperatures for AWS quantum processors. Candidates must have a background in both microwave theory and implementation. Working effectively within a cross-functional team environment is critical. The ideal candidate will have a proven track record of hardware development from requirements development to validation. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for the signal conditioning of AWS quantum processor systems at cryogenic temperatures. You’ll bring a passion for innovation, collaboration, and mentoring to: Solve layered technical problems across our cryogenic signal chain. Develop requirements with key system stakeholders, including quantum device, test and measurement, cryogenic hardware, and theory teams. Design, implement, test, deploy, and maintain innovative solutions that meet both performance and cost metrics. Research enabling technologies necessary for AWS to produce commercially viable quantum computers. A day in the life As you design and implement cryogenic microwave signal conditioning solutions, from requirements definition to deployment, you will also: Participate in requirements, design, and test reviews and communicate with internal stakeholders. Work cross-functionally to help drive decisions using your unique technical background and skill set. Refine and define standards and processes for operational excellence. Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Our Prime Air Drone Vehicle Design and Test team within Flight Sciences is looking for an outstanding engineer to help us rapidly configure, design, analyze, prototype, and test innovative drone vehicles. You’ll be responsible for assessing the Aerodynamics, Performance, and Stability & Control characteristics of vehicle designs. You’ll help build and utilize our suite of Multi-disciplinary Optimization (MDO) tools. You’ll explore new and novel drone vehicle conceptual designs in both focused and wide open design spaces, with the ultimate goal of meeting our customer requirements. You’ll have the opportunity to prototype vehicle designs and support wind tunnel and other testing of vehicle designs. You will directly support the Office of the Chief Program Engineer, and work closely across all vehicle subsystem teams to ensure integrated designs that meet performance, reliability, operability, manufacturing, and cost requirements. About the team Our Flight Sciences Vehicle Design & Test organization includes teams that span the following disciplines: Aerodynamics, Performance, Stability & Control, Configuration & Spatial Integration, Loads, Structures, Mass Properties, Multi-disciplinary Optimization (MDO), Wind Tunnel Testing, Noise Testing, Flight Test Instrumentation, and Rapid Prototyping.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Large Language Models (LLM)? We are embarking on a multi-year journey to improve the shopping experience for customers using Alexa globally. In 2024, we started building all Shopping experiences leveraging LLMs in the US. We create customer-focused solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. We are seeking an Applied Scientist to lead a new, greenfield initiative that shapes the arc of invention with Machine Learning and Large Language Models. Your deliverables will directly impact executive leadership team goals and shape the future of shopping experiences with Alexa. We’re working to improve shopping on Amazon using the conversational capabilities of LLMs, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists, engineers, across the breadth of Amazon Shopping and AGI to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, WA, Seattle
The vision for Alexa is to be the world’s best personal assistant. Such an assistant will play a vital role in managing the communication lives of customers, from drafting communications to coordinating with people on behalf of customers. At Alexa Communications, we’re leveraging Generative AI to bring this vision to life. If you’re passionate about building magical experiences for customers, while solving hard, complex technical problems, then this role is for you. You will operate at the intersection of large language models, real time communications, voice and graphical user interfaces, and mixed reality to deliver cutting-edge features for end users. Come join us to invent the future of how millions of customers will communicate with and through their virtual AI assistants. Key job responsibilities The Comms Experience Insights (CXI) team is looking for an experienced, self-driven, analytical, and strategic Data Scientist II. We are looking for an individual who is passionate about tying together huge amounts of data to answer complex stakeholder questions. You should have deep expertise in translating data into meaningful insights through collaboration with Data Engineers and Business Analysts. You should also have extensive experience in model fitting and explaining how the insights derived from those models impact a business. In this role, you will take data curated by a dedicated team of Data Engineers to conduct deep statistical analysis on usage trends. The right candidate will possess excellent business and communication skills, be able to work with business owners to develop and define key business questions, and be able to collaborate with Data Engineers and Business Analysts to analyze data that will answer those questions. The right candidate should have a solid understanding of how to curate the right datasets that can be used to train data models, and the desire to learn and implement new technologies and services to further a scalable, self-service model.