Fitzgerald keynote.png
Amazon senior applied scientist Jack FitzGerald, delivering a keynote talk at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria.

Scaling multilingual virtual assistants to 1,000 languages

Self-supervised training, distributed training, and knowledge distillation have delivered remarkable results, but they’re just the tip of the iceberg.

Yesterday at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria, Amazon senior applied scientist Jack FitzGerald delivered a keynote talk on multilingual virtual assistants and the path toward a massively multilingual future. This is an edited version of his talk.

The evolution of human-computer interaction paradigms

In the past 50 years, computing technology has progressed from text-based terminal inputs, to graphical user interfaces, to predominantly web-based applications, through the mobile era, and finally into the era of a voice user interface and ambient computing.

Interface timeline.png
A brief history of computing interfaces.

Each of these paradigms has its own challenges with respect to multilingualism, whether it was the migration from ASCII to Unicode or proper character rendering on a website. However, I would argue that a voice AI system is the most difficult paradigm yet with respect to massive multilingualism.

The first reason is that the input space for voice interface commands is unbounded: the user can phrase each command in hundreds of different ways, all of which are valid. Another reason is that even within a single language, there can be many different dialects and accents.

Related content
Amazon Visiting Academic Barbara Poblete helps to build safer, more-diverse online communities — and to aid disaster response.

Most important, the coupling between language and culture is inescapable. Whether it’s the level of formality used, preferred activities, or religious differences, there isn’t a one-size-fits-all solution. Instead, we must adapt the virtual assistant to understand cultural context and say only things that are appropriate for a given locale.

Voice AI systems today

A typical voice AI system includes automatic-speech-recognition models, which convert raw audio into text; natural-language understanding models, which determine the user’s intent and recognize named entities; a central service for arbitration and dialogue management, which routes commands to the proper services or skills; and finally, a text-to-speech model, which issues the output. Additional tasks might include expansion of the underlying knowledge graph and semantic parsing, localization of touch screen content, or local information services.

Alexa overview.png
An overview of Alexa’s design.

Let’s look at some of the operational considerations for supporting multiple languages in such models. One is the training data: they must be topically exhaustive, meaning that they cover the full spectrum of possible user utterances, and they must be culturally exhaustive — for instance, covering all of the holidays a user might celebrate. They must also remain up-to-date, and it’s not always easy to add something new to the model without regression on existing functionalities.

A second consideration is in-house testing. Though in many cases one can get away with synthetic or otherwise artificial data for model training, for testing it’s important to have realistic utterances. Those typically need to come from humans, and collecting them can be a major expense. It’s also useful to perform live, interactive testing, which requires people who can speak and understand each language that the system supports.

Related content
New approach corrects for cases when average improvements are accompanied by specific regressions.

Finally, it’s important to have the ability to support users and process their feedback. In most cases, this again requires staff who understand each of the supported languages.

Ultimately, human-based processes are not very scalable if our goal is to support thousands of languages. Instead, we must turn to technology to the greatest extent possible.

Multilingual modeling today

One of the leading reasons for the current success of multilingual text models is self-supervision.

In traditional supervised learning, a model would be trained from scratch on the desired task. If we wanted a model that would classify the sentiment of a product review, for example, we would manually annotate a bunch of product reviews, and we would use that dataset to train the model.

Today, however, we make use of transfer learning, in which text models are pretrained on terabytes of text data that don’t require manual annotation. Instead, the training procedure leverages the structure inherent to the text itself.

Self-supervision signals.png
Self-supervised-training objectives.

We’ll call this self-supervised pretraining With the masked-language-modeling training objective, for instance, the model is fed the input “for [MASK] out loud!”, and it must predict that “[MASK]” should be filled with the word “crying”. Other objectives, such as causal language modeling, span filling, deshuffling, and denoising can also be used.

Because the datasets required for self-supervised pretraining are unlabeled and monolingual, we can leverage troves of data, such as Common Crawl web scrapes, every Wikipedia page in existence, thousands of books and news articles, and more. Couple these large datasets with highly parallelizable architectures such as transformers, which can be trained on over a thousand GPUs with near linear scaling, and we can build models with tens or hundreds of billions of dense parameters. Such has been the focus for many people in the field for the past few years, including the Alexa Teacher Model team.

One incredible consequence of the transfer learning paradigm is called zero-shot learning. In the context of multilingual modeling, it works like this: the modeler begins by pretraining the model on some set of languages, using self-supervision. As an example, suppose that the modeler trains a model on English, French, and Japanese using every Wikipedia article in those three languages.

Related content
New end-to-end approach to zero-shot video classification dramatically outperforms predecessors.

The next step is to adapt the model to a particular task using labeled data. Suppose that the modeler has a labeled dataset for intent classification, but only in English. The modeler can go ahead and fine-tune the model on the English data, then run it on the remaining languages.

Despite the fact that the model was never trained to do intent classification with French or Japanese data, it can still classify intents in those languages, by leveraging what it learned about those languages during pretraining. Given that the acquisition of labeled data is often a bottleneck, this property of language models is highly valuable for language expansion. Of course, zero-shot learning is just the extreme end of a continuum: transfer learning helps even out performance when the labeled data in different languages is imbalanced.

Zero-shot multilingual.png
Zero-shot learning for multilingual adaptation.

The next step up the data efficiency ladder is performing tasks without any additional training or fine tuning, using only a couple of labeled records or none at all. This is possible through “in-context learning,” which was popularized in the GPT-3 paper.

To perform in-context learning, simply take a pretrained model and feed it the appropriate prompts. Think of a prompt is a hint to the model about the task it should perform. Suppose that we want the model to summarize a passage. We might prefix the passage with the word “Passage” and a colon and follow it with the word “Summary” and a colon. The model would then generate a summary of the passage.

Related content
In the past few years, advances in artificial intelligence have captured our imaginations and led to the widespread use of voice services on our phones and in our homes.

This is the zero-shot in-context learning case, meaning that no fine-tuning is performed, and no labeled data are needed. To improve task performance, we can feed a few examples to the model before asking it to perform the task. Though this does require some labeled data, the amount is small, usually in the tens of examples only.

Our Alexa Teacher Model team recently trained and tested a 20-billion-parameter sequence-to-sequence model that was multilingual and showed nice performance for in-context learning. For example, we showed state-of-the-art performance on machine translation with in-context learning. The model can achieve competitive BLEU scores even for some low-resource languages, which is incredible given that no parallel data was used during pretraining, and no labeled data besides a single example was used at any step in the process.

We were particularly proud of the relatively small size of this model, which could compete with much larger models because it was trained on more data. (The Chinchilla model from OpenAI showed a similar result.) Though a large model trained on a smaller dataset and a smaller model trained on a larger dataset may use the same total compute at training time, the smaller model will require less compute and memory during inference, which is a key factor in real applications.

Given that models demonstrate multilingual understanding even without labeled data or parallel data, you may be wondering what’s happening inside of the model. Since the days of word2vec and earlier, we’ve represented characters, words, sentences, documents, and other inputs as vectors of floats, also known as embeddings, hidden states, and representations. Concepts cluster in certain areas of the representational space.

Related content
Training a product discovery system on many languages at once improves performance in all of them.

As humans, we can think only in three dimensions, whereas these representations are high-dimensional, but you can visualize this clustering in two or three dimensions as a reductive approximation. All the languages the model supports would cluster the concept of sitting in a chair in one region of the representational space; the concept of the ocean would inhabit a different cluster; and so forth.

Indeed, Pires et al. have shown that synonymous words across languages cluster together in the mBERT model. When examining 5,000 sentence pairs from the WMT16 dataset, they found that, given a sentence and its embedding in one language, the correct translation from another language is the closest embedding to the source embedding up to 75% of the time.

This manner of clustering can also be manipulated by changing the objective function. In their work on speech-to-text-modeling, Adams et al., from Johns Hopkins, were seeing undesirable clustering by language, rather than by phonemes, in the representational space. They were able to correct by adding training objectives around phoneme prediction and language identification.

The Alexa Teacher Model distillation pipeline

Once we have multilingual models, how do we adapt them to a real system? At the recent KDD conference, we presented a paper describing the Alexa Teacher Model pipeline, consisting of the following steps.

First, a multilingual model with billions of parameters is trained on up to a trillion tokens taken from Common Crawl web scrapes, Wikipedia articles, and more. Second, the models are further trained on in-domain, unlabeled data from a real system. Third, the model is distilled into smaller sizes that can be used in production. The final models can then be fine-tuned using labeled data and deployed.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

In tests, we found that our model was more accurate than a publicly available pretrained model fine-tuned on labeled data, and it significantly reduced customer dissatisfaction relative to a model trained by a smaller teacher model (85 million parameters, say, instead of billions). In short, we’ve verified that we can leverage the additional learning capacity of large, multilingual models for production systems requiring low latency and low memory consumption.

Scaling to 1,000 languages

I mentioned the fascinating ability of language models to learn joint representations of multiple languages without labeled or parallel data. This ability is crucial for us to scale to many languages. However, as we scale, we need test data that we can trust so that we can evaluate our progress.

Related content
MASSIVE dataset and Massively Multilingual NLU (MMNLU-22) competition and workshop will help researchers scale natural-language-understanding technology to every language on Earth.

Toward this end, my team at Amazon recently released a new benchmark for multilingual natural-language understanding called MASSIVE, which is composed of one million labeled records spanning 51 languages, 18 domains, 60 intents, and 55 slots. All of the data were created by native speakers of the languages. We also released a GitHub repository with code that can be used as a baseline for creating multilingual NLU models, as well as leaderboards on eval.ai.

Now, you may retort that 51 languages is still a long ways from 1,000 languages. This is true, but we purposefully chose our languages in order to maximize typological diversity while staying within our budget. Our languages span 29 language genera, 14 language families, and 21 distinct scripts or alphabets. The diversity of the chosen languages allows a modeler to test technology that should scale to many more languages within each represented genus, family, and script.

That said, we certainly have some major gaps in language coverage, including across native North and South American languages, African languages, and Australian languages. Yet we are optimistic that our fellow researchers across the field will continue to produce new labeled benchmark datasets for the world’s thousands of low-resource languages.

Massive languages.cropped.png
The 51 languages of MASSIVE, including scripts and genera.

Another difficulty with our current modeling approaches is that they rely on data sources such as web scrapes, encyclopedic articles, and news articles, which are highly skewed toward a small set of languages. Wang, Ruder, and Neubig recently presented some fascinating work leveraging bilingual lexicons — corpora consisting of word-level translations — to improve language model performance for low-resource languages. Lexicons cover a far greater portion of the world’s languages than our typical data sources for language modeling, making this an exciting approach.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Researchers, missionaries, and businesspeople have been created fundamental linguistic resources for decades, from Bible translations to the Unimorph corpus. The Unimorph datasets are used for the SIGMORPHON shared task, in which a model must predict the correct formulation of word given that word’s root and certain morphological transformations, such as part of speech, tense, and person. We must find more ways to leverage such resources when creating massively multilingual voice AI systems.

As a final technique for scaling to many more languages, we can consider what we in Alexa call “self-learning.” Some of my Alexa colleagues published a paper showing that we can mine past utterances to improve overall system performance. For example, if a user rephrases a request as part of a multiturn interaction, as shown on the left in the figure below, or if different users provide variations for the same desired goal, as shown on the right, then we can make soft assumptions that the different formulations are synonymous.

All of these cases can be statistically aggregated to form new training sets to update the system, without the need to manually annotate utterances. In a multilingual system, such technology is particularly valuable after the initial launch of a language, both to improve performance generally and to adapt to changes in the lexicon.

Self-learning.png
Alexa’s self-learning mechanism.

The road ahead

I hope that you share my wonder at the current state of the art — the scale of language-model training, the magic of zero-shot learning, and the distillation of knowledge into compact models that can run in latency-sensitive systems. All of this is incredible, but we’ve only scratched the surface of supporting the world’s 7,000 languages.

To move into the next era of massive multilingualism, we must build new and increasingly powerful models that can take advantage of low-cost data, particularly unlabeled monolingual data. We must also build models that can leverage existing and upcoming linguistic resources, such as bilingual lexicons and morphological-transformation databases. And finally, we must expand available language resources across more languages and domains, including more unlabeled monolingual corpora, more parallel resources, and more realistic, labeled, task-specific datasets.

Increased multilingualism is a win for all people everywhere. Each language provides a unique perspective on the world in which we live. A rich plurality of perspectives leads to a deeper understanding of our fellow people and of all creation.

Keep building.

Research areas

Related content

US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. #GenAI
US, CA, San Diego
The Private Brands team is looking for a Sr. Research Scientist to join the team in building science solutions at scale. Our team applies Optimization, Machine Learning, Statistics, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business and develop Statistical Models and Algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Scientists, Engineers, PMTs and Economists. Key job responsibilities You will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable optimization solutions and ML models. This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and economists. As a Sr Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. We are particularly interested in candidates with experience in Operations Research, ML and predictive models and working with distributed systems. Academic and/or practical background in Operations Research and Machine Learning specifically Reinforcement Learning are particularly relevant for this position. To know more about Amazon science, Please visit https://www.amazon.science About the team We are a one pizza, agile team of scientists focused on solving supply chain challenges for Amazon Private Brands products. We collaborate with Amazon central teams like SCOT and develop both central as well as APB-specific solutions to address various challenges, including sourcing, demand forecasting, ordering optimization, inventory distribution, and inventory health management. Working closely with business stakeholders, Product Management Teams (PMTs), and engineering partners, we drive projects from initial concept through production deployment and ongoing monitoring.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, WA, Seattle
Shape the Future of Human-Machine Interaction Are you a master of natural language processing, eager to push the boundaries of conversational AI? Amazon is seeking exceptional graduate students to join our cutting-edge research team, where they will have the opportunity to explore and push the boundaries of natural language processing (NLP), natural language understanding (NLU), and speech recognition technologies. Imagine waking up each morning, fueled by the excitement of tackling complex research problems that have the potential to reshape the world. You'll dive into production-scale data, exploring innovative approaches to natural language understanding, large language models, reinforcement learning with human feedback, conversational AI, and multimodal learning. Your days will be filled with brainstorming sessions, coding sprints, and lively discussions with brilliant minds from diverse backgrounds. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated.. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Natural Language Processing & Speech Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: NLP/NLU, LLMs, Reinforcement Learning, Human Feedback/HITL, Deep Learning, Speech Recognition, Conversational AI, Natural Language Modeling, Multimodal Learning. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Natural Language Processing and Speech Technologies. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on natural language processing, speech recognition, text-to-speech (TTS), text recognition, question answering, NLP models (e.g., LSTM, transformer-based models), signal processing, information extraction, conversational modeling, audio processing, speaker detection, large language models, multilingual modeling, and more. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in natural language processing, speech recognition, text-to-speech, question answering, and conversational modeling. - Tackle groundbreaking research problems on production-scale data, leveraging techniques such as LSTM, transformer-based models, signal processing, information extraction, audio processing, speaker detection, large language models, and multilingual modeling. - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in NLP/NLU, LLMs, reinforcement learning, human feedback/HITL, deep learning, speech recognition, conversational AI, natural language modeling, and multimodal learning. - Thrive in a fast-paced, ever-changing environment, embracing ambiguity and demonstrating strong attention to detail.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact