Fitzgerald keynote.png
Amazon senior applied scientist Jack FitzGerald, delivering a keynote talk at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria.

Scaling multilingual virtual assistants to 1,000 languages

Self-supervised training, distributed training, and knowledge distillation have delivered remarkable results, but they’re just the tip of the iceberg.

Yesterday at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria, Amazon senior applied scientist Jack FitzGerald delivered a keynote talk on multilingual virtual assistants and the path toward a massively multilingual future. This is an edited version of his talk.

The evolution of human-computer interaction paradigms

In the past 50 years, computing technology has progressed from text-based terminal inputs, to graphical user interfaces, to predominantly web-based applications, through the mobile era, and finally into the era of a voice user interface and ambient computing.

Interface timeline.png
A brief history of computing interfaces.

Each of these paradigms has its own challenges with respect to multilingualism, whether it was the migration from ASCII to Unicode or proper character rendering on a website. However, I would argue that a voice AI system is the most difficult paradigm yet with respect to massive multilingualism.

The first reason is that the input space for voice interface commands is unbounded: the user can phrase each command in hundreds of different ways, all of which are valid. Another reason is that even within a single language, there can be many different dialects and accents.

Related content
Amazon Visiting Academic Barbara Poblete helps to build safer, more-diverse online communities — and to aid disaster response.

Most important, the coupling between language and culture is inescapable. Whether it’s the level of formality used, preferred activities, or religious differences, there isn’t a one-size-fits-all solution. Instead, we must adapt the virtual assistant to understand cultural context and say only things that are appropriate for a given locale.

Voice AI systems today

A typical voice AI system includes automatic-speech-recognition models, which convert raw audio into text; natural-language understanding models, which determine the user’s intent and recognize named entities; a central service for arbitration and dialogue management, which routes commands to the proper services or skills; and finally, a text-to-speech model, which issues the output. Additional tasks might include expansion of the underlying knowledge graph and semantic parsing, localization of touch screen content, or local information services.

Alexa overview.png
An overview of Alexa’s design.

Let’s look at some of the operational considerations for supporting multiple languages in such models. One is the training data: they must be topically exhaustive, meaning that they cover the full spectrum of possible user utterances, and they must be culturally exhaustive — for instance, covering all of the holidays a user might celebrate. They must also remain up-to-date, and it’s not always easy to add something new to the model without regression on existing functionalities.

A second consideration is in-house testing. Though in many cases one can get away with synthetic or otherwise artificial data for model training, for testing it’s important to have realistic utterances. Those typically need to come from humans, and collecting them can be a major expense. It’s also useful to perform live, interactive testing, which requires people who can speak and understand each language that the system supports.

Related content
New approach corrects for cases when average improvements are accompanied by specific regressions.

Finally, it’s important to have the ability to support users and process their feedback. In most cases, this again requires staff who understand each of the supported languages.

Ultimately, human-based processes are not very scalable if our goal is to support thousands of languages. Instead, we must turn to technology to the greatest extent possible.

Multilingual modeling today

One of the leading reasons for the current success of multilingual text models is self-supervision.

In traditional supervised learning, a model would be trained from scratch on the desired task. If we wanted a model that would classify the sentiment of a product review, for example, we would manually annotate a bunch of product reviews, and we would use that dataset to train the model.

Today, however, we make use of transfer learning, in which text models are pretrained on terabytes of text data that don’t require manual annotation. Instead, the training procedure leverages the structure inherent to the text itself.

Self-supervision signals.png
Self-supervised-training objectives.

We’ll call this self-supervised pretraining With the masked-language-modeling training objective, for instance, the model is fed the input “for [MASK] out loud!”, and it must predict that “[MASK]” should be filled with the word “crying”. Other objectives, such as causal language modeling, span filling, deshuffling, and denoising can also be used.

Because the datasets required for self-supervised pretraining are unlabeled and monolingual, we can leverage troves of data, such as Common Crawl web scrapes, every Wikipedia page in existence, thousands of books and news articles, and more. Couple these large datasets with highly parallelizable architectures such as transformers, which can be trained on over a thousand GPUs with near linear scaling, and we can build models with tens or hundreds of billions of dense parameters. Such has been the focus for many people in the field for the past few years, including the Alexa Teacher Model team.

One incredible consequence of the transfer learning paradigm is called zero-shot learning. In the context of multilingual modeling, it works like this: the modeler begins by pretraining the model on some set of languages, using self-supervision. As an example, suppose that the modeler trains a model on English, French, and Japanese using every Wikipedia article in those three languages.

Related content
New end-to-end approach to zero-shot video classification dramatically outperforms predecessors.

The next step is to adapt the model to a particular task using labeled data. Suppose that the modeler has a labeled dataset for intent classification, but only in English. The modeler can go ahead and fine-tune the model on the English data, then run it on the remaining languages.

Despite the fact that the model was never trained to do intent classification with French or Japanese data, it can still classify intents in those languages, by leveraging what it learned about those languages during pretraining. Given that the acquisition of labeled data is often a bottleneck, this property of language models is highly valuable for language expansion. Of course, zero-shot learning is just the extreme end of a continuum: transfer learning helps even out performance when the labeled data in different languages is imbalanced.

Zero-shot multilingual.png
Zero-shot learning for multilingual adaptation.

The next step up the data efficiency ladder is performing tasks without any additional training or fine tuning, using only a couple of labeled records or none at all. This is possible through “in-context learning,” which was popularized in the GPT-3 paper.

To perform in-context learning, simply take a pretrained model and feed it the appropriate prompts. Think of a prompt is a hint to the model about the task it should perform. Suppose that we want the model to summarize a passage. We might prefix the passage with the word “Passage” and a colon and follow it with the word “Summary” and a colon. The model would then generate a summary of the passage.

Related content
In the past few years, advances in artificial intelligence have captured our imaginations and led to the widespread use of voice services on our phones and in our homes.

This is the zero-shot in-context learning case, meaning that no fine-tuning is performed, and no labeled data are needed. To improve task performance, we can feed a few examples to the model before asking it to perform the task. Though this does require some labeled data, the amount is small, usually in the tens of examples only.

Our Alexa Teacher Model team recently trained and tested a 20-billion-parameter sequence-to-sequence model that was multilingual and showed nice performance for in-context learning. For example, we showed state-of-the-art performance on machine translation with in-context learning. The model can achieve competitive BLEU scores even for some low-resource languages, which is incredible given that no parallel data was used during pretraining, and no labeled data besides a single example was used at any step in the process.

We were particularly proud of the relatively small size of this model, which could compete with much larger models because it was trained on more data. (The Chinchilla model from OpenAI showed a similar result.) Though a large model trained on a smaller dataset and a smaller model trained on a larger dataset may use the same total compute at training time, the smaller model will require less compute and memory during inference, which is a key factor in real applications.

Given that models demonstrate multilingual understanding even without labeled data or parallel data, you may be wondering what’s happening inside of the model. Since the days of word2vec and earlier, we’ve represented characters, words, sentences, documents, and other inputs as vectors of floats, also known as embeddings, hidden states, and representations. Concepts cluster in certain areas of the representational space.

Related content
Training a product discovery system on many languages at once improves performance in all of them.

As humans, we can think only in three dimensions, whereas these representations are high-dimensional, but you can visualize this clustering in two or three dimensions as a reductive approximation. All the languages the model supports would cluster the concept of sitting in a chair in one region of the representational space; the concept of the ocean would inhabit a different cluster; and so forth.

Indeed, Pires et al. have shown that synonymous words across languages cluster together in the mBERT model. When examining 5,000 sentence pairs from the WMT16 dataset, they found that, given a sentence and its embedding in one language, the correct translation from another language is the closest embedding to the source embedding up to 75% of the time.

This manner of clustering can also be manipulated by changing the objective function. In their work on speech-to-text-modeling, Adams et al., from Johns Hopkins, were seeing undesirable clustering by language, rather than by phonemes, in the representational space. They were able to correct by adding training objectives around phoneme prediction and language identification.

The Alexa Teacher Model distillation pipeline

Once we have multilingual models, how do we adapt them to a real system? At the recent KDD conference, we presented a paper describing the Alexa Teacher Model pipeline, consisting of the following steps.

First, a multilingual model with billions of parameters is trained on up to a trillion tokens taken from Common Crawl web scrapes, Wikipedia articles, and more. Second, the models are further trained on in-domain, unlabeled data from a real system. Third, the model is distilled into smaller sizes that can be used in production. The final models can then be fine-tuned using labeled data and deployed.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

In tests, we found that our model was more accurate than a publicly available pretrained model fine-tuned on labeled data, and it significantly reduced customer dissatisfaction relative to a model trained by a smaller teacher model (85 million parameters, say, instead of billions). In short, we’ve verified that we can leverage the additional learning capacity of large, multilingual models for production systems requiring low latency and low memory consumption.

Scaling to 1,000 languages

I mentioned the fascinating ability of language models to learn joint representations of multiple languages without labeled or parallel data. This ability is crucial for us to scale to many languages. However, as we scale, we need test data that we can trust so that we can evaluate our progress.

Related content
MASSIVE dataset and Massively Multilingual NLU (MMNLU-22) competition and workshop will help researchers scale natural-language-understanding technology to every language on Earth.

Toward this end, my team at Amazon recently released a new benchmark for multilingual natural-language understanding called MASSIVE, which is composed of one million labeled records spanning 51 languages, 18 domains, 60 intents, and 55 slots. All of the data were created by native speakers of the languages. We also released a GitHub repository with code that can be used as a baseline for creating multilingual NLU models, as well as leaderboards on eval.ai.

Now, you may retort that 51 languages is still a long ways from 1,000 languages. This is true, but we purposefully chose our languages in order to maximize typological diversity while staying within our budget. Our languages span 29 language genera, 14 language families, and 21 distinct scripts or alphabets. The diversity of the chosen languages allows a modeler to test technology that should scale to many more languages within each represented genus, family, and script.

That said, we certainly have some major gaps in language coverage, including across native North and South American languages, African languages, and Australian languages. Yet we are optimistic that our fellow researchers across the field will continue to produce new labeled benchmark datasets for the world’s thousands of low-resource languages.

Massive languages.cropped.png
The 51 languages of MASSIVE, including scripts and genera.

Another difficulty with our current modeling approaches is that they rely on data sources such as web scrapes, encyclopedic articles, and news articles, which are highly skewed toward a small set of languages. Wang, Ruder, and Neubig recently presented some fascinating work leveraging bilingual lexicons — corpora consisting of word-level translations — to improve language model performance for low-resource languages. Lexicons cover a far greater portion of the world’s languages than our typical data sources for language modeling, making this an exciting approach.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Researchers, missionaries, and businesspeople have been created fundamental linguistic resources for decades, from Bible translations to the Unimorph corpus. The Unimorph datasets are used for the SIGMORPHON shared task, in which a model must predict the correct formulation of word given that word’s root and certain morphological transformations, such as part of speech, tense, and person. We must find more ways to leverage such resources when creating massively multilingual voice AI systems.

As a final technique for scaling to many more languages, we can consider what we in Alexa call “self-learning.” Some of my Alexa colleagues published a paper showing that we can mine past utterances to improve overall system performance. For example, if a user rephrases a request as part of a multiturn interaction, as shown on the left in the figure below, or if different users provide variations for the same desired goal, as shown on the right, then we can make soft assumptions that the different formulations are synonymous.

All of these cases can be statistically aggregated to form new training sets to update the system, without the need to manually annotate utterances. In a multilingual system, such technology is particularly valuable after the initial launch of a language, both to improve performance generally and to adapt to changes in the lexicon.

Self-learning.png
Alexa’s self-learning mechanism.

The road ahead

I hope that you share my wonder at the current state of the art — the scale of language-model training, the magic of zero-shot learning, and the distillation of knowledge into compact models that can run in latency-sensitive systems. All of this is incredible, but we’ve only scratched the surface of supporting the world’s 7,000 languages.

To move into the next era of massive multilingualism, we must build new and increasingly powerful models that can take advantage of low-cost data, particularly unlabeled monolingual data. We must also build models that can leverage existing and upcoming linguistic resources, such as bilingual lexicons and morphological-transformation databases. And finally, we must expand available language resources across more languages and domains, including more unlabeled monolingual corpora, more parallel resources, and more realistic, labeled, task-specific datasets.

Increased multilingualism is a win for all people everywhere. Each language provides a unique perspective on the world in which we live. A rich plurality of perspectives leads to a deeper understanding of our fellow people and of all creation.

Keep building.

Research areas

Related content

FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Control Stack Manager to join our growing software group. You will lead a team of interdisciplinary scientists and software engineers, focused on developing research software and infrastructure to support the development and operation of scalable fault-tolerant quantum computers. You will interface directly with our experimental physics and control hardware teams to develop and drive a vision for the experimental quantum computing software-hardware interface. The ideal candidate will (1) have strong technical breadth across low-level programming, scientific instrumentation, and computer architecture, (2) have excellent communication skills and a proven track record of collaborating with scientists and hardware engineers, and (3) be excited about empowering and growing a team of scientists and software engineers. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility. Key job responsibilities - Develop a technical vision for the quantum software-hardware interface in collaboration w/ senior engineers - Collaborate effectively with science and hardware teams to derive software needs and priorities - Own resource allocation and planning activities for your team to meet the needs of (internal) customers - Be comfortable “getting your hands dirty” (i.e. diving deep into architecture, metrics, and implementation) - Regularly provide technical evaluation and feedback to your reports (i.e. via code review, design docs, etc.) - Drive hiring activities for your team — develop growth plans, source candidates, and design interview loops - Coach and empower your employees to become better engineers, scientists, and communicators We are looking for candidates with strong engineering principles, a bias for action, superior problem-solving, and excellent communication skills. Thriving in ambiguity and leading with empathy are essential. As a manager embedded in a broader research science organization, you will have the opportunity to work on new ideas and stay abreast of the field of experimental quantum computation. A day in the life The majority of your time will be spent orchestrating, coaching, and growing the control stack team at the Center for Quantum Computing. This requires collaborating with other science and software teams and working backwards from the needs of our science staff in the context of our larger experimental roadmap. You will translate science needs and priorities into software project proposals and resource allocations. Once project proposals have been accepted, you will support and empower your team to deliver these projects on time while maintaining high standards of engineering excellence. Because many high-level experimental goals have cross-cutting requirements, you’ll need to stay in sync with partner science and software teams. About the team You will be joining the software group within the Center of Quantum Computing. Our team is comprised of scientists and software engineers who are building scalable software that enables quantum computing technologies.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. The ideal candidate would have experience in audio processing, natural language understanding and machine learning. Familiarity with machine translation, foundational models, and speech synthesis will be a plus. As an Applied Scientist, you should be a strong communicator, able to describe scientifically rigorous work to business stakeholders of varying levels of technical sophistication. You will closely partner with the solution development teams, and should be intensely curious about how the research is moving the needle for business. Strong inter-personal and mentoring skills to develop applied science talent in the team is another important requirement.
US, WA, Bellevue
Why this job is awesome? - This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. - MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. - We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. - Do you want to join an innovative team of scientists and engineers who use optimization, machine learning and Gen-AI techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the same-day delivery service of Amazon? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the Delivery Experience Machine Learning team! Key job responsibilities · Research and implement Optimization, ML and Gen-AI techniques to create scalable and effective models in Delivery Experience (DEX) systems · Design and develop optimization models and reinforcement learning models to improve quality of same-day selections · Apply LLM technology to empower CX features · Establishing scalable, efficient, automated processes for large scale data analysis and causal inference
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.