Shrinking machine learning models for offline use

"Perfect hashing" is among the techniques that reduce the memory footprints of machine learning models by 94%.

Last week, the Alexa Auto team announced the release of its new Alexa Auto Software Development Kit (SDK), enabling developers to bring Alexa functionality to in-vehicle infotainment systems.

SYNC 3 and Amazon Echo
Ford is working to link home automation devices like Amazon Echo and Wink with its vehicles through Ford SYNC®, allowing consumers to control lights, thermostats and other home systems from their car and interact with their vehicle, including starting and unlocking it, from their home.

The initial release of the SDK assumes that automotive systems will have access to the cloud, where the machine-learning models that power Alexa currently reside. But in the future, we would like Alexa-enabled vehicles — and other mobile devices — to have recourse to some core functions even when they’re offline. That will mean drastically reducing the size of the underlying machine-learning models, so they can fit in local memory.

At the same time, third-party developers have created more than 45,000 Alexa skills, which expand on Alexa’s native capabilities, and that number is increasing daily. Even in the cloud, third-party skills are loaded into memory only when explicitly invoked by a customer request. Shrinking the underlying models would reduce load time, ensuring that Alexa customers continue to experience millisecond response times.

At this year’s Interspeech, my colleagues and I will present a new technique for compressing machine-learning models that reduces their memory footprints by 94% while leaving their performance almost unchanged. We report our results in a paper titled “Statistical model compression for small-footprint natural language understanding.”

Quantization

Alexa’s natural-language-understanding systems, which interpret free-form utterances, use several different types of machine-learning (ML) models, but they all share some common traits. One is that they learn to extract “features” — or strings of text with particular predictive value — from input utterances. An ML model trained to handle music requests, for instance, will probably become sensitized to text strings like “the Beatles”, “Elton John”, “Whitney Houston”, “Adele”, and so on. Alexa’s ML models frequently have millions of features.

Another common trait is that each feature has a set of associated “weights,” which determine how large a role it should play in different types of computation. The need to store multiple weights for millions of features is what makes ML models so memory intensive.

Our first technique for compressing an ML model is to quantize its weights. We take the total range of weights — say, -100 to 100 — and divide it into even intervals — say, -100 to -90, -90 to -80, and so on. Then we simply round each weight off to the nearest boundary value for its interval. In practice, we use 256 intervals, which allows us to represent every weight in the model with a single byte of data, with minimal effect on the network’s accuracy. This approach has the added benefit of automatically rounding low weights to zero, so they can be discarded.

Perfect hashing

Our other compression technique is more elegant. If an Alexa customer says, “Alexa, play ‘Yesterday,’ by the Beatles,” we want our system to pull up the weights associated with the feature “the Beatles” — not the weights associated with “Adele”, “Elton John”, and the rest. This requires a means of mapping particular features to the memory locations of the corresponding weights.

The standard way to perform such mappings is through hashing. A hash function is a mathematical function that takes arbitrary inputs and scrambles them up — hashes them — in such a way that the outputs (1) are of fixed size and (2) bear no predictable relationship to the inputs. If the output size is fixed at 16 bits, for instance, there are 65,536 possible hash values, but “Hank Williams” might map to value 1, while “Hank Williams, Jr.” maps to value 65,000.

Nonetheless, traditional hash functions sometimes produce collisions: Hank Williams, Jr. may not map to the same location as Hank Williams, but something totally arbitrary — the Bay City Rollers, say — might. In terms of runtime performance, this usually isn’t a big problem. If you hash the name “Hank Williams” and find two different sets of weights at the corresponding memory location, it doesn’t take that long to consult a metadata tag to determine which set of weights belongs to which artist.

In terms of memory footprint, however, this approach to collision resolution makes a substantial difference. With quantizing, the weights themselves will require just a few bytes of data; the metadata used to distinguish sets of weights could end up requiring more space in memory than the data it’s tagging.

We address this problem by using a more advanced hashing technique called perfect hashing, which maps a specific number of data items to the same number of memory slots but guarantees there will be no collisions. With perfect hashing, the system can simply hash a string of characters and pull up the corresponding weights — no metadata required.

Perfect-hashing algorithm
Our perfect-hashing algorithm relies on a family of conventional hash functions (h1, h2, etc.). If a function in the family produces a collision-free hash, we toggle the corresponding 0 in an array to 1. Then we repeat the process with different functions and smaller arrays, until every input value has a unique hash.

To produce a perfect hash, we assume that we have access to a family of conventional hash functions all of which produce random hashes. That is, each function in the family might hash “Hank Williams” to a different value, but that value tells you nothing about how the same function will hash any other string. In practice, we use the hash function MurmurHash, which can be seeded with a succession of different values.

Suppose that you have N input strings that you want to hash. We begin with an array of N 0’s. Then we apply our first hash function — call it Hash1 — to all N inputs. For every string that yields a unique hash value — no collisions — we change the corresponding 0 in the array to a 1.

Then we build a new array of 0’s, with entries for only the input strings that yielded collisions under Hash1. To those strings, we now apply a different hash function — say, Hash2 — and we again toggle the 0’s corresponding to collision-free hashes.

We repeat this process until every input string has a corresponding 1 in some array. Then we combine all the arrays into one giant array. The position of a 1 in the giant array indicates the unique memory location assigned to the corresponding input string.

Now, when the trained network receives an input, it applies Hash1 to each of the input’s substrings and, if it finds a 1 in the first array, it goes to the associated address. If it finds a 0, it applies Hash2 and repeats the process.

Calling successive hash functions for some inputs does incur a slight performance penalty. But it’s a penalty that’s paid only where a conventional hash function would yield a collision, anyway. In our paper, we include both a theoretical analysis and experimental results that demonstrate that this penalty is almost negligible. And it’s certainly a small price to pay for the drastic reduction in memory footprint that the method affords.

Acknowledgments: Kanthashree Mysore Sathyendra, Stanislav Peshterliev

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, WA, Bellevue
At Amazon's FinTech organization, we are looking for an Applied Scientist to spearhead the development of Generative AI applications that will redefine the financial services industry. You will harness the transformative power of Large Language Models (LLMs) and multi-agent architectures to drive disruptive innovation across Finance domains such as fraud prevention, financial forecasting, and insurance. Because of our scale, your products will have hundreds of millions of dollars of impact. Key job responsibilities As an Applied Scientist on our team, you will be responsible for the research, design, development and evaluation of Generative AI models and agents. You will play a critical role in driving the development of LLM-based multi-agent architectures that automate complex workflows to delight our customers. You will handle Amazon-scale use cases with significant impact on our customers’ experiences. You will collaborate closely with cross-functional science, engineering and business partners to identify and deliver high-impact use cases for Generative AI. You will contribute to the broader research community by publishing your work in peer-reviewed conferences and journals. Check out this AWS Blog for some of our recent work in LLMs for financial application: https://aws.amazon.com/blogs/machine-learning/efficient-continual-pre-training-llms-for-financial-domains/
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.