Interspeech
This year's Interspeech will be held in Graz, Austria, whose famed clock tower was built in the mid-1500s
Photo courtesy of Getty Images

The 16 Alexa-related papers at this year’s Interspeech

At next week’s Interspeech, the largest conference on the science and technology of spoken-language processing, Alexa researchers have 16 papers, which span the five core areas of Alexa functionality: device activation, or recognizing speech intended for Alexa and other audio events that require processing; automatic speech recognition (ASR), or converting the speech signal into text; natural-language understanding, or determining the meaning of customer utterances; dialogue management, or handling multiturn conversational exchanges; and text-to-speech, or generating natural-sounding synthetic speech to convey Alexa’s responses. Two of the papers are also more-general explorations of topics in machine learning.

Device Activation

Model Compression on Acoustic Event Detection with Quantized Distillation
Bowen Shi, Ming Sun, Chieh-Chi Kao, Viktor Rozgic, Spyros Matsoukas, Chao Wang

The researchers combine two techniques to shrink neural networks trained to detect sounds by 88%, with no loss in accuracy. One technique, distillation, involves using a large, powerful model to train a leaner, more-efficient one. The other technique, quantization, involves using a fixed number of values to approximate a larger range of values.

Sub-band Convolutional Neural Networks for Small-footprint Spoken Term Classification
Chieh-Chi Kao, Ming Sun, Yixin Gao, Shiv Vitaladevuni, Chao Wang

Convolutional neural nets (CNNs) were originally designed to look for the same patterns in every block of pixels in a digital image. But they can also be applied to acoustic signals, which can be represented as two-dimensional mappings of time against frequency-based “features”. By restricting an audio-processing CNN’s search only to the feature ranges where a particular pattern is likely to occur, the researchers make it much more computationally efficient. This could make audio processing more practical for power-constrained devices.

A Study for Improving Device-Directed Speech Detection toward Frictionless Human-Machine Interaction
Che-Wei Huang, Roland Maas, Sri Harish Mallidi, Björn Hoffmeister

This paper is an update of prior work on detecting device-directed speech, or identifying utterances intended for Alexa. The researchers find that labeling dialogue turns (distinguishing initial utterances from subsequent utterances) and using signal representations based on Fourier transforms rather than mel-frequencies improve accuracy. They also find that, among the features extracted from speech recognizers that the system considers, confusion networks, which represent word probabilities at successive sentence positions, have the most predictive power.

Automatic Speech Recognition (ASR)

Acoustic Model Bootstrapping Using Semi-Supervised Learning
Langzhou Chen, Volker Leutnant

The researchers propose a method for selecting machine-labeled utterances for semi-supervised training of an acoustic model, the component of an ASR system that takes an acoustic signal as input. First, for each training sample, the system uses the existing acoustic model to identify the two most probable word-level interpretations of the signal at each position in the sentence. Then it finds examples in the training data that either support or contradict those probability estimates, which it uses to adjust the uncertainty of the ASR output. Samples that yield significant reductions in uncertainty are preferentially selected for training.

Improving ASR Confidence Scores for Alexa Using Acoustic and Hypothesis Embeddings
Prakhar Swarup, Roland Maas, Sri Garimella, Sri Harish Mallidi, Björn Hoffmeister

Speech recognizers assign probabilities to different interpretations of acoustic signals, and these probabilities can serve as inputs to a machine learning model that assesses the recognizer’s confidence in its classifications. The resulting confidence scores can be useful to other applications, such as systems that select machine-labeled training data for semi-supervised learning. The researchers append embeddings — fixed-length vector representations — of both the raw acoustic input and the speech recognizer’s best estimate of the word sequence to the inputs to a confidence-scoring network. The result: a 6.5% reduction in equal-error rate (the error rate that results when the false-negative and false-positive rates are set as equal).

Multi-Dialect Acoustic Modeling Using Phone Mapping and Online I-Vectors
Harish Arsikere, Ashtosh Sapru, Sri Garimella

Multi-dialect acoustic models, which help convert multi-dialect speech signals to words, are typically neural networks trained on pooled multi-dialect data, with separate output layers for each dialect. The researchers show that mapping the phones — the smallest phonetic units of speech — of each dialect to those of the others offers comparable results with shorter training times and better parameter sharing. They also show that recognition accuracy can be improved by adapting multi-dialect acoustic models, on the fly, to a target speaker.

Neural Machine Translation for Multilingual Grapheme-to-Phoneme Conversion
Alex Sokolov, Tracy Rohlin, Ariya Rastrow

Grapheme-to-phoneme models, which translate written words into their phonetic equivalents (“echo” to “E k oU”), enable speech recognizers to handle words they haven’t seen before. The researchers train a single neural model to handle grapheme-to-phoneme conversion in 18 languages. The results are comparable to those of state-of-the-art single-language models for languages with abundant training data and better for languages with sparse data. Multilingual models are more flexible and easier to maintain in production environments.

Scalable Multi Corpora Neural Language Models for ASR
Anirudh Raju, Denis Filimonov, Gautam Tiwari, Guitang Lan, Ariya Rastrow

Language models, which compute the probability of a given sequence of words, help distinguish between different interpretations of speech signals. Neural language models promise greater accuracy than existing models, but they’re difficult to incorporate into real-time speech recognition systems. The researchers describe several techniques to make neural language models practical, from a technique for weighting training samples from out-of-domain data sets to noise contrastive estimation, which turns the calculation of massive probability distributions into simple binary decisions.

Natural-Language Understanding

Neural Named Entity Recognition from Subword Units
Abdalghani Abujabal, Judith Gaspers

Named-entity recognition is crucial to voice-controlled systems — as when you tell Alexa “Play ‘Spirit’ by Beyoncé”. A neural network that recognizes named entities typically has dedicated input channels for every word in its vocabulary. This has two drawbacks: (1) the network grows extremely large, which makes it slower and more memory intensive, and (2) it has trouble handling unfamiliar words. The researchers trained a named-entity recognizer that instead takes subword units — characters, phonemes, and bytes — as inputs. It offers comparable performance with a vocabulary of only 332 subwords, versus 74,000-odd words.

Dialogue Management

HyST: A Hybrid Approach for Flexible and Accurate Dialogue State Tracking
Rahul Goel, Shachi Paul, Dilek Hakkani-Tür

Dialogue-based computer systems need to track “slots” — types of entities mentioned in conversation, such as movie names — and their values — such as Avengers: Endgame. Training a machine learning system to decide whether to pull candidate slot values from prior conversation or compute a distribution over all possible slot values improves slot-tracking accuracy by 24% over the best-performing previous system.

Towards Universal Dialogue Act Tagging for Task-Oriented Dialogues
Shachi Paul, Rahul Goel, Dilek Hakkani-Tür

Dialogue-based computer systems typically classify utterances by “dialogue act” — such as requesting, informing, and denying — as a way of gauging progress toward a conversational goal. As a first step in developing a system that will automatically label dialogue acts in human-human conversations (to, in turn, train a dialogue-act classifier), the researchers create a “universal tagging scheme” for dialogue acts. They use this scheme to reconcile the disparate tags used in different data sets.

Topical-Chat: Towards Knowledge-Grounded Open-Domain Conversations
Karthik Gopalakrishnan, Behnam Hedayatnia, Qinlang Chen, Anna Gottardi, Sanjeev Kwatra, Anu Venkatesh, Raefer Gabriel, Dilek Hakkani-Tür

The researchers report a new data set, which grew out of the Alexa Prize competition and is intended to advance research on AI agents that engage in social conversations. Pairs of workers recruited through Mechanical Turk were given information on topics that arose frequently during Alexa Prize interactions and asked to converse about them, documenting the sources of their factual assertions. The researchers used the resulting data set to train a knowledge-grounded response generation network, and they report automated and human evaluation results as state-of-the-art baselines.

Text-to-Speech

Towards Achieving Robust Universal Neural Vocoding
Jaime Lorenzo Trueba, Thomas Drugman, Javier Latorre, Thomas Merritt, Bartosz Putrycz, Roberto Barra-Chicote, Alexis Moinet, Vatsal Aggarwal

A vocoder is the component of a speech synthesizer that takes the frequency-spectrum snapshots generated by other components and fills in the information necessary to convert them to audio. The researchers trained a neural-network-based vocoder using data from 74 speakers of both genders in 17 languages. The resulting “universal vocoder” outperformed speaker-specific vocoders, even on speakers and languages it had never encountered before and unusual tasks such as synthesized singing.

Fine-Grained Robust Prosody Transfer for Single-Speaker Neural Text-to-Speech
Viacheslav Klimkov, Srikanth Ronanki, Jonas Rohnke, Thomas Drugman

The researchers present a new technique for transferring prosody (intonation, stress, and rhythm) from a recording to a synthesized voice, enabling the user to choose whose voice will read recorded content, with inflections preserved. Where earlier prosody transfer systems used spectrograms — frequency spectrum snapshots — as inputs, the researchers’ system uses easily normalized prosodic features extracted from the raw audio.

Machine Learning

Two Tiered Distributed Training Algorithm for Acoustic Modeling
Pranav Ladkat, Oleg Rybakov, Radhika Arava, Sree Hari Krishnan Parthasarathi,I-Fan Chen, Nikko Strom

When neural networks are trained on large data sets, the training needs to be distributed, or broken up across multiple processors. A novel combination of two state-of-the-art distributed-learning algorithms — GTC and BMUF — achieves both higher accuracy and more-efficient training then either, when learning is distributed to 128 parallel processors.

BMUF-GTC.gif._CB436386414_.gif
The researchers' new method splits distributed processors into groups, and within each group, the processors use the highly accurate GTC method to synchronize their models. At regular intervals, designated representatives from all the groups use a different method — BMUF — to share their models and update them accordingly. Finally, each representative broadcasts its updated model to the rest of its group.
Animation by Nick Little

One-vs-All Models for Asynchronous Training: An Empirical Analysis
Rahul Gupta, Aman Alok, Shankar Ananthakrishnan

A neural network can be trained to perform multiple classifications at once: it might recognize multiple objects in an image, or assign multiple topic categories to a single news article. An alternative is to train a separate “one-versus-all” (OVA) classifier for each category, which classifies data as either in the category or out of it. The advantage of this approach is that each OVA classifier can be re-trained separately as new data becomes available. The researchers present a new metric that enables comparison of multiclass and OVA strategies, to help data scientists determine which is more useful for a given application.

Research areas

Related content

US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop vision language models (VLMs) on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. You would work collaboratively with teammates to develop and use a python codebase for fine-tuning VLMs. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, GitLab, and Visual Studio Code. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to fine-tune VLMs on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train VLMs on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Implement new features to the code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Join a sizeable team of data scientists, research scientists, and machine learning engineers that develop computer vision models on overhead imagery for a high-impact government customer. We own the entire machine learning development life cycle, developing models on customer data: - Exploring the data and brainstorming and prioritizing ideas for model development - Implementing new features in our sizable code base - Training models in support of experimental or performance goals - T&E-ing, packaging, and delivering models We perform this work on both unclassified and classified networks, with portions of our team working on each network. We seek a new team member to work on the classified networks. Three to four days a week, you would travel to the customer site in Northern Virginia to perform tasking as described below. Weekdays when you do not travel to the customer site, you would work from your local Amazon office. You would work collaboratively with teammates to use and contribute to a well-maintained code base that the team has developed over the last several years, almost entirely in python. You would have great opportunities to learn from team members and technical leads, while also having opportunities for ownership of important project workflows. You would work with Jupyter Notebooks, the Linux command line, Apache AirFlow, GitLab, and Visual Studio Code. We are a very collaborative team, and regularly teach and learn from each other, so, if you are familiar with some of these technologies, but unfamiliar with others, we encourage you to apply - especially if you are someone who likes to learn. We are always learning on the job ourselves. Key job responsibilities With support from technical leads, carry out tasking across the entire machine learning development lifecycle to develop computer vision models on overhead imagery: - Run data conversion pipelines to transform customer data into the structure needed by models for training - Perform EDA on the customer data - Train deep neural network models on overhead imagery - Develop and implement hyper-parameter optimization strategies - Test and Evaluate models and analyze results - Package and deliver models to the customer - Incorporate model R&D from low-side researchers - Implement new features to the model development code base - Collaborate with the rest of the team on long term strategy and short-medium term implementation. - Contribute to presentations to the customer regarding the team’s work.
US, MA, N.reading
Amazon Industrial Robotics (AIR) is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of the latest software and AI tools for robots. We are seeking an expert to lead the development of our SLAM and Spatial AI module. In this role, you will create methods that will enable our robot to perceive the environment and navigate with unrivaled vision and fidelity. The system will combine an array of diverse sensors with simultaneous localization and mapping software that continuously updates the map in real-time automatically. It will have the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. The system combines a mix of high-performance sensors with simultaneous localization and mapping software that builds and continuously updates maps in real-time, completely automatically. It has the capability to ‘see’ and identify different objects, people, vehicles, and places as it moves and react to moving people and vehicles in an intelligent way. Key job responsibilities - Analyze, design, develop, and test existing and new perception capabilities using cameras and LIDAR sensor inputs for obstacle detection and semantic understanding. - Research, design, implement and evaluate scientific approaches to a variety of autonomy challenges.. - Create experiments and prototype implementations of new perception algorithms. - Deliver high quality production level code (C++ or Python) and support systems in production. - Collaborate with other functional teams in a robotics organization. - Collaborate closely with hardware engineering team members on developing systems from prototyping to production level. - Represent Amazon in academia community through publications and scientific presentations. - Work with stakeholders across hardware, science, and operations teams to iterate on systems design and implementation.
US, WA, Bellevue
Why this job is awesome? - This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. - MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. - We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. - Do you want to join an innovative team of scientists and engineers who use optimization, machine learning and Gen-AI techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the same-day delivery service of Amazon? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the Delivery Experience Machine Learning team! Key job responsibilities · Research and implement Optimization, ML and Gen-AI techniques to create scalable and effective models in Delivery Experience (DEX) systems · Design and develop optimization models and reinforcement learning models to improve quality of same-day selections · Apply LLM technology to empower CX features · Establishing scalable, efficient, automated processes for large scale data analysis and causal inference
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!