The science behind Amazon’s spatial audio-processing technology

Combining psychoacoustics, signal processing, and speaker beamforming enhances stereo audio and delivers an immersive sound experience for customers.

With every new Echo device and upgrade, we challenge ourselves to bring the best audio experience to our customers at an affordable price. This year, we’re introducing Amazon’s own custom-built spatial audio-processing technology, designed to enhance stereo sound on compatible Echo devices.

The version of the technology on Echo Studio, for instance, is customized to the specific acoustic design of the speakers and employs digital-processing methods — such as upmixing and virtualization — so stereo audio, television shows, and movie soundtracks feel closer to the listener, with greater width, clarity, and presence. It turns the Echo Studio into a hi-fi audio system that mirrors that of a stereo reference arrangement. Vocal performances are more present in the center soundstage, and stereo panned instruments are better defined on the sides, thereby creating a more immersive sound experience that reproduces the artist's intent.

In this blog post, we break down how we built this spatial audio-processing technology with an emphasis on the way humans perceive sound — or psychoacoustics — by using a combination of crosstalk cancellation, speaker beamforming, and upmixing to create a room-filling, spatial audio experience.

Psychoacoustics: Width, depth, and listening zones

Throughout development, we characterize the stereo image by its psychoacoustic qualities, including width, depth, and listening zones. We then investigate how sound waves interact with listeners in various room shapes and sizes and how signal-processing methods affect the listener’s experience.

Stereo angle.png
Echo Studio virtualizes the stereo sound field at the listener’s location in the far field.

Width

Width: The angular extent (wide vs. narrow) of localizable elements in the stereo image along the horizontal — or azimuth — plane.

When determining the width of a sound field, we first consider localizable elements such as a point-source that would induce time and level differences in the acoustic responses at the listener’s two ears. To model this phenomenon, it is helpful to compare the listening experiences on headphones vs. a loudspeaker in terms of the separation of left and right ear responses.

Unlike loudspeaker listening, headphone listening lacks a crosstalk path, as illustrated in the image below. In order to make headphone listening realistic, we can model crosstalk from the point-source to the two ears using an all-pass signal-processing filter for one ear and a delayed low-pass filter for the other ear. The two filters approximate and parameterize the listener’s ear responses with respect to their relative head-related transfer functions (HRTFs), which contain important cues that the human ear uses to localize sound. Moreover, the filter design ensures that there’s minimal modification to the signal spectra — or tonal balance — and therefore preserves the original playback content.

Crosstalk simulation.png
All-pass and delayed low-pass filters approximate the angle-dependent relative ipsilateral (same side of the body) and contralateral (opposite side of the body) head-related transfer functions (HRTFs).

However, unlike headphones, an external speaker can create its own crosstalk for the listener, depending on its placement. For example, the left and right speaker transducers, or drivers, on the Echo Studio are narrowly spaced within the device, whereas the speakers in a standard stereo pair are 60 degrees apart relative to the listener.

With the spatial audio-processing technology on Echo Studio, we decouple the crosstalk of the driver pair by modeling and then inverting the system of equations between each driver and the listener’s ears, via crosstalk cancellation (CTC) methods. If we have more than two drivers, then the more general formulation is called null-steering, where filters are designed for all the drivers so that their acoustic responses cancel at one ear.

In both cases, we can normalize the filter design to satisfy a target cancellation gain curve defined by the power ratio of the acoustic energy at the ipsilateral (same side of the body) and contralateral (opposite side of the body) ears across frequencies. This prevents overfitting the cancellation to an exact location, since a listener may be at varying distances or not perfectly centered to the device.

Once the driver’s CTC filters are designed for stereo inputs, they can be combined with the approximated HRTF filters that introduce the amount of crosstalk consistent with a stereo reference system.

CTC filters.png
Stereo virtualization for external speaker playback specifies an additional pair of crosstalk cancellation (CTC) filters for nulling the contralateral acoustic response. The relative transfer function (RTF) filter realizes the ratio of the two CTC filter responses.

Depth

Depth: The distance (frontal vs. recessed) of the perceived sound field from the listener.

The distance at which sound elements in an audio track localize correlates with the relationship — or coherence — of the two signals between the sound source and the listener’s ears. For example, a simple left or right signal from a speaker is easy to understand, but if the audio mixes with the room’s reverberation, the audio clarity decreases, and the audio sounds recessed.

In speaker playback, however, we contend with the speaker directivity and its interaction with the room environment. For example, a direct acoustic path between a speaker and a listener preserves the desired clarity of the original content. But when the acoustic signal reflects off of walls, the loss in coherence recesses the perceived sound field and causes elements to smear spatially. This is why tracks heard anechoically or on headphones appear closer — or even inside the listener’s head — and clearer than tracks heard over external speakers in a reverberant room. In the first case, the acoustic response is direct from the driver to the listener’s ears, while external speakers must contend with the effects of the room environment.

Beamformer impact.png
Strong room reflections and reverberation mask the binaural cues and reduce the perceived distance of the soundstage. Speaker beamforming pushes the soundstage forward by attenuating the indirect sound energy, increasing the critical distance and coherence.

As part of our custom-built spatial audio technology, we can control the speaker directivity via careful beamforming. The speaker drivers can be filtered to produce a sound field with a directivity that sums coherently on-axis and cancels off-axis. That is, the acoustic response is greatest when the listener is lined up in front of the speaker and, conversely, weakest when the listener is to the side at +/- 90 degrees.

Therefore, one way to design with such directivity is to place two nulls at +/- 90-degree angles and either control for the cancellation gain between on-/off-axis power responses or the shape of the nulls as a function of azimuth. The resulting beam pattern is one with a main lobe that is wide enough for the direct path to be strong, at up to a +/- 45-degree azimuth listening window, before quickly tapering off to minimize the acoustic energy further off-axis, which would reflect off the walls.

This has the intended effect of making stereo audio feel closer to the listener, with greater clarity than is typical in an acoustically untreated listening environment like a living room. The effect is similar to how theaters reproduce a frontal soundstage over different seating areas, despite the speakers’ being far away.

Beamforming.png
The speaker beamformer increases directivity after placing two off-axis nulls in the midrange frequencies. The acoustic responses over frequency and azimuth contrast that of simple matrix mixing with the beamformer realized in relative-transfer-function (RTF) form.

Listening zones

Listening zone: The mapping between the listening area and the stereo soundstage.

A listening “sweet spot” — the stereo image in a hi-fi audio system reference stereo pair — is best reproduced when the listener’s location forms an equilateral triangle with the stereo speaker pair. If the listener angle exceeds +/- 30 degrees, then a hole is created in the listener’s phantom center due to the loss of inter-speaker-to-ear coherence as room reflections grow stronger. Important elements of the audio mix, such as vocals, lose their presence. If the listener angle falls below +/- 30 degrees, then the stereo image narrows, as audio elements collapse toward the center. If the listener’s location is off-axis, then the stereo image biases towards one side or the other.

Phantom center.png
The stereo field relies on a “phantom center”, where important lead vocals and instruments are mixed. The center content can be separated from the original stereo left and right input after the mid-/side decomposition.

To combat this, our spatial audio technology aims to reproduce the stereo image over the largest listening area. In practice, the intended listening area of CTC-filtered playback conflicts with that of beamforming designs that control for speaker directivity. We can achieve a compromise by performing stereo upmixing and then applying different beamforming filters to each channel. For example, we can upmix into left, right, and center (LRC), where the center is minimally correlated with left-minus-right in the mid-/side decomposition.

The upmixed left channel is processed through the CTC filter that nulls the right ear after virtualization, the upmixed right channel nulls the left ear, and the center channel is beamformed with a wide main lobe. This means that vocal performances are more present in the center, while the stereo panned instruments are better defined on the side, creating a more immersive sound experience for the listener.

Signal flow.png
After upmixing, the virtualization and the crosstalk cancellation (CTC) widens the left and right channels, and the midrange beamformer pushes the center content forward. Subsequent delay blocks phase-align the faster of the two paths.

We’re continuing to iterate and refine technology across the Echo portfolio to bring the best audio experience to our customers. If you’d like to learn more about beamforming and speaker directivity in room acoustics, read papers published by our engineering team: “Fast source-room-receiver modeling”, in EUSIPCO 2020, and “Spherical harmonic beamformer designs", in EURASIP 2021.

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, MA, Westborough
We are seeking a Principal Applied Scientist to lead the development of our autonomous driving stack for last-mile delivery vehicles. In this role, you will drive technical innovation, architect advanced autonomous systems, and lead a team of researchers and engineers in pushing the boundaries of what's possible in autonomous delivery. Key job responsibilities As the Principal Applied Scientist, you will architect and evolve LMDA's autonomous driving stack for last-mile delivery vehicles. Your role involves driving research and development in key areas such as perception, prediction, planning, and control. You will develop novel algorithms and approaches to solve complex challenges in urban autonomous navigation. A critical aspect of your role will be leading system-level architecture decisions and setting technical direction for the autonomous systems team. You will mentor and develop a team of scientists and engineers, fostering a culture of innovation and excellence. This involves close collaboration with cross-functional teams including hardware, safety, and operations to ensure seamless integration of autonomous systems. As a senior technical leader, you will represent LMDA's technical capabilities to partners, customers, and at industry conferences. In this role, you will define and execute the technical roadmap for LMDA's autonomous systems. This includes identifying key research areas and technological advancements that will drive LMDA's competitive advantage. A crucial aspect of your role will be balancing long-term research goals with near-term product delivery needs. You will lead the integration of various autonomous subsystems into a cohesive, performant stack. This includes developing and implementing strategies for optimizing system performance across hardware and software. You will also design and oversee testing and validation frameworks for autonomous systems. About the team Last Mile Delivery Automation (LMDA) is at the forefront of revolutionizing the logistics industry through advanced autonomous vehicle technology. Our mission is to create safe, efficient, and scalable autonomous solutions for last-mile delivery, reducing costs and environmental impact while improving delivery speed and reliability.
US, VA, Arlington
he WWGST (Worldwide Grocery Stores Tech) teams are seeking a highly motivated Senior Research Scientist (Level 6) to join our team that is focused on building new technologies for grocery stores. We are a team of applied scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping such as Dash Cart or Self-CheckOut. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011 Key job responsibilities As a Senior Research Scientist, you will help solve a variety of technical challenges and mentor other junior scientists. You will be leader of the science team to resolve the hard problems. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.