The science behind Echo Show 10

A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

The first Echo Show represented an entirely new way to interact with Alexa; she could show you things on a screen controlled by voice. Being able to easily see your favorite recipe, watch your flash briefing, or video call with a friend is delightful — but we thought we could add even more to the experience. Our screens are stationary, but we are not. So with Echo Show 10, we asked ourselves: how can we keep the screen in view, no matter where you are in the room? The answer: it has to move.

Creating a device that can move intelligently in a way that improves the Alexa experience and is not distracting was no easy task. We had to consider when, where, and how to incorporate motion into Echo Show to make it feel like a natural extension of how customers experience Alexa.

Combining audio and computer vision algorithms

When you say “Alexa” to any Echo Show device today, you’ll see a blue light bar on screen. The lighter part of that blue light bar approximates the direction the device chooses to focus; we call this beam selection. Echo devices try to select the beam that gives the best accuracy for recognizing what was said.

Cutaway view of Echo 10's motor with a brass disc at the bottom.
A cutaway view of Echo 10's motor (brass disc at bottom).

However, what works for beam selection doesn’t work best for guiding motion. Noises, multiple speakers, or sound reflections from walls and other surfaces can prevent these algorithms from selecting the beam that best represents the direction of the talker. And with audio-only output, it doesn’t matter if Echo’s input system has selected a different beam: the user still hears Alexa’s response. But a screen that’s constantly moving around to avoid these echoes and noises would be a severe distraction.

With Echo Show 10, we solve this problem by combining sound source localization (SSL) with computer vision (CV). Our implementation of SSL uses acoustic-wave-decomposition and machine-learning techniques to determine the direction in which the user is most probably located. Then, the raw SSL measurements are fused with our CV algorithms.

The intersection of design and science

Learn how a team of designers, scientists, and engineers worked together to overcome challenges and create Echo Show 10.

The CV algorithms can identify objects and humans in the field of view, enabling the device to differentiate between sounds coming from people and those coming from other sources and reflections off walls. Sometimes audio can reflect from behind the device, so we added a setup step in which customers set the device’s range of motion. If the device can ignore sounds originating outside its range of motion, it’s better able to avoid reflections and narrow down the direction of the wake word.

The CV algorithms turn the camera image into hundreds of data points representing shapes, edges, facial landmarks, and general coloring; then the image is deleted permanently. These data points cannot be reverse-engineered to the original input, and no facial-recognition technology is used. All of this processing happens in a matter of milliseconds, entirely on-device.

Visualization of the non-reversible process Echo 10 uses to convert images into a higher-level abstraction to support motion.
A visualization of the non-reversible process Echo 10 uses to convert images into a higher-level abstraction to support motion.

The device’s computer vision service (CVS) can dynamically vary the frame rate (the number of frames per second), and it operates with over 95% precision at distances of up to 10 feet. The CVS uses spatiotemporal filtering to suppress ephemeral false positives caused by camera motion and blur. In a multiuser environment, engagement detection — determining which user is facing the device — helps us further target the screen to the relevant user or users.

Defining the experience

With our algorithms built, the next step was to orchestrate the ideal customer experience. We started with capturing data from internal beta participants and product teams. Amazon employees tested Echo Show 10 in their homes, and before the hardware was even ready, we used virtual-reality to gather early input on what movements felt most natural, preferred speed of motion, and so on. What we learned was invaluable.

First, knowing when not to move is just as important as knowing when to move. We wanted customers to be able to manually redirect the screen. But that meant distinguishing between the pressure applied by someone scrolling through a recipe while making dinner and someone physically trying to move the device. The device also needed to know that if it turned in one direction and hit something — a wall, cabinet, etc. — it should not continue to go in that direction.

This required a motor resistance — or “back drive” — that could kick in, or not, depending on the user’s movement. A lot of fine-tuning went into getting that distinction and timing right.

We also had to determine a speed and acceleration that felt natural. The motor allows us to accelerate at up to 360 degrees/second2 to a speed of up to 180 degrees/second. However, at that speed, in a typical, in-home environment, you risk knocking over a glass or a picture frame that might be near the device. Move too slowly, on the other hand, and you might try the customer’s patience — and even risk spurious stall detection. We settled on a speed that was quick but also allowed the device to stop short if it bumped an object.

Lastly, we needed to define the types of movements that Echo Show 10 will make. As humans, we have an innate ability to know when to respond with our eyes versus a full move of the head. Echo Show 10, while not quite as adaptive as a human, tries to approximate this distinction with three zones of perception, defined by the camera’s field of view.

Within the “dead” zone, the center of the field of view, the device doesn’t move, even if the customers do. Within the “holding” zone, the regions of the field of view outside the center, the device turns only if the customer settles into a new position for long enough. And when the customer enters the “motion” zone, the edges of the field of view, the device moves, ensuring that the screen always remains visible.

The range of these zones, their dependency on your distance from the device, and the device’s speed and acceleration are tuned based on thousands of hours of lab and user testing. There are also certain situations where Echo Show 10 will not move — for instance, if the built-in camera shutter is closed or if SSL cannot differentiate between sounds in two very different directions.

Applications

Echo Show stationed on a kitchen counter.
Imagine, says Sajjadi, that as you were cooking the Echo Show 10 was watching you and could alert you if you missed an ingredient. That, he says, would be an example of taking procuedure monitoring from the shop floor to the kitchen.

After solving these scientific challenges came the fun part: what are some of the first features that will use motion? Video calling is a hugely popular feature for Echo Show customers, so the use of auto-framing and motion in calling was obvious. Customers also tend to place Echo Show devices in kitchens and use Alexa for recipes, so not requiring a busy cook to strain to see a recipe on-screen was also top of mind.

And because customers love Alexa Guard for helping keep their homes safe while they are away, remote access to the camera was high on the list as well. When Away Mode is turned on, Echo Show 10 will periodically pan the room and send a Smart Alert if someone is detected in its field of view. You can also remotely check in on your home for added peace of mind if you are on a trip or to see if your dog has snuck onto the couch while you’re at the grocery store.

In developing Echo Show 10, I have come to appreciate how complex, evolved, and adaptive we are as a species; the things we communicate with nonverbal cues are incredibly complex yet somehow globally understood. We believe that the potential of motion as a response modality is enormous, and we’re just scratching the surface of all the ways we can delight customers with Echo Show 10. For that reason, we’re inviting developers to build experiences for Echo Show 10, with motion APIs that they can use to unleash their creativity. To learn more about these new APIs, visit our developer blog.

Research areas

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!