The science behind visual ID

A new opt-in feature for Echo Show and Astro provides more-personalized content and experiences for customers who choose to enroll.

With every feature and device we build, we challenge ourselves to think about how we can create an immersive, personalized, and proactive experience for our customers. Often, our devices are used by multiple people in our homes, and yet there are times when you want a more personalized experience. That was the inspiration for visual ID. 

On the all-new Echo Show 15, Echo Show 8, and Echo Show 10, you and other members of your household will soon be able to enroll in visual ID, so that at a glance you can see personalized content such as calendars and reminders, recently played music, and notes for you. 

And with Astro, a new kind of household robot, enrolling in visual ID enables Astro to do things like find you to deliver something, such as a reminder or an item in Astro’s cargo bin.

Creating your visual ID

Visual ID is opt-in, so you must first enroll in the feature, much as you can enroll in voice ID (formerly Alexa voice profile) today. During enrollment, you will use the camera on your supported Echo Show device or Astro to take a series of headshots at different angles. For visual ID to accurately recognize you, we require five different angles of your face. 

During the enrollment process, the device runs algorithms to ensure that each of the images is of high enough quality. For example, if the room is too dark, you will see on-screen instructions to adjust the lighting and try again. You will also see on-screen notifications as an image of each pose is successfully captured. 

The images are used to create numeric representations of your facial characteristics. Called vectors (one for each angle of your face), these numeric representations are just that: a string of numbers. The images are also used to revise the vectors in the event of periodic updates to the visual ID model — meaning customers are not required to re-enroll in visual ID every time there is a model update. These images and vectors are securely stored on-device, not in Amazon’s cloud.

Up to 10 members of a household per account can enroll on each compatible Echo Show or Astro to enjoy more-personalized experiences for themselves. Customers with more than one visual-ID-compatible device will need to enroll on each device individually.

enrollment image_resized.png
A screenshot of the enrollment process, during which the device’s camera takes a series of headshots at different angles.

Identifying an enrolled individual

Once you’ve enrolled in visual ID, your device attempts to match people who walk into the camera’s field of view with the visual IDs of enrolled household members. There are two steps to this process, facial detection and facial recognition, and both are done through local processing using machine learning models called convolutional neural networks. 

To recognize a person, the device first uses a convolutional neural network to detect when a face appears in the camera’s field of view. If a person whom the device does not recognize as enrolled in visual ID walks into the camera’s field of view, the device will determine that there are no matches to the stored vectors. The device does not retain images or vectors from unenrolled individuals after processing. All of this happens in fractions of a second and is done securely on-device.

When your supported Echo Show device recognizes you, your avatar and a personalized greeting will appear in the upper right of the screen.

Echo Show 15_Visual ID.jpg
An example of what Echo Show 15 might show on its screen once an enrolled individual is recognized.

What shows on Astro’s screen will depend on what Astro is doing. For example, if you’ve enrolled in visual ID, and Astro is trying to find you, Astro will display text on its screen — “Looking for [Bob]”, followed by “Found [Bob]” — to acknowledge that it’s recognized you.

Looking for Bob.png
Astro will display text on its screen — “Looking for [Bob]”, followed by “Found [Bob]” — to acknowledge that it’s recognized you.

Enhancing fairness 

We set a high bar for equity when it came to designing visual ID. To clear that bar, our scientists and engineers built and refined our visual ID models using millions of images — collected in studies with participants’ consent — explicitly representing a diversity of gender, ethnicity, skin tone, age, ability, and other factors. We then set performance targets to ensure the visual ID feature performed well across groups.

In addition to consulting with several Amazon Scholars who specialize in computer vision, we also consulted with an external expert in algorithmic bias, Ayanna Howard, dean of the Ohio State University College of Engineering, to review the steps we took to enhance the fairness of the feature. We’ve implemented feedback from our Scholars and Dr. Howard, and we will solicit and listen to customer feedback and make improvements to ensure the feature continues to improve on behalf of our customers.

Privacy by design

As with all of our products and services, privacy was foundational to how we built and designed visual ID. As mentioned above, the visual IDs of enrolled household members are securely stored on-device, and both Astro and Echo Show devices use local processing to recognize enrolled customers. You can delete your visual ID from individual devices on which you’ve enrolled through on-device settings and, for Echo Show, through the Alexa app. This will delete the stored enrollment images and associated vectors from your device. We will also automatically delete your visual ID from individual devices if your face is not recognized by that device for 18 months.

It’s still day one for visual ID, Echo Show, and Astro. We look forward to hearing how our customers use visual ID to personalize their experiences with our devices.

Research areas

Related content

US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
BR, SP, Sao Paulo
Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, WA, Seattle
Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In this role, you will invent science and systems for Transactional Video on Demand and Channels, including machine learning-based pricing and promotion systems. You will work with a team of scientists and product managers to design customer-facing products, and you will work with technology teams to productize and maintain the associated solutions. We are looking for an applied scientist to join our interdisciplinary team of Data Scientists, Applied Scientists, Economists, Data Engineers and Software Engineers. The ideal candidate combines machine learning expertise with the ability to deploy algorithms into production. You have deep knowledge of recommender systems and/or personalization models and experience applying them to Amazon-scale data. You understand tradeoffs between business needs and model complexity, and you take calculated risks in developing rapid prototypes and iterative model improvements. You are excited to learn from and alongside seasoned scientists, engineers, and business leaders. You are an excellent communicator and effectively translate technical findings into production systems and business action (and customer delight). Key responsibilities As an Applied Scientist on this team, you will: - Develop and implement recommender models for studio partners and customers; - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase customer engagement and monetization; - Run experiments, gather data, and perform statistical analysis; - Collaborate with tech and engineering teams to develop and optimize production systems; - Research new and innovative machine learning approaches; - Work with other scientists to raise the science and coding bar across Prime Video. About the team Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads.
US, CA, San Francisco
The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers. This role is part of the foundations modeling team with focus on model pre-training across modalities. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, CA, San Diego
Do you want to join an innovative team of scientists who leverage new technologies like reinforcement learning (RL), large language models (LLMs), graph analytics, and machine learning to help Amazon provide the best customer experience by protecting Amazon customers from hackers and bad actors? Do you want to build advanced algorithmic systems that integrate these state-of-the-art techniques to help manage the trust and safety of millions of customers every day? Are you excited by the prospect of analyzing and modeling terabytes of data and creating sophisticated algorithms that combine RL, LLMs, graph embeddings, and traditional machine learning methods to solve complex real-world problems? Do you like to innovate, simplify, and push the boundaries of what's possible? If yes, then you may be a great fit to join the Amazon Account Integrity team, where you'll have the opportunity to work at the forefront of AI and machine learning, tackling challenging problems that have a direct impact on the security and trust of Amazon's customers. The Amazon Account Integrity team works to ensure that customers are protected from bad actors trying to access their accounts. Our greatest challenge is protecting customer trust without unjustly harming good customers. To strike the right balance, we invest in mechanisms which allow us to accurately identify and mitigate risk, and to quickly correct and learn from our mistakes. This strategy includes continuously evolving enforcement policies, iterating our Machine Learning risk models, and exercising high‐judgement decision‐making where we cannot apply automation. Please visit https://www.amazon.science for more information
US, MA, North Reading
Are you excited about developing algorithms and models to power Amazon's next generation robotic storage systems? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for enthusiastic scientists for a variety of roles. The Research team at Amazon Robotics is seeking a passionate, collaborative, hands-on Research Scientist to develop planning and scheduling algorithms to support Amazon's next generation robotic storage systems. The focus of this position workflow optimization and robot task-assignment. It includes designing and evaluating planning and scheduling algorithms using a combination of machine learning and optimization methods as appropriate. This work spans from research such optimal decision making, to policy learning, to experimenting using simulation and modeling tools, to running large-scale A/B tests on robots in our facilities. The ideal candidate for this position will be familiar with planning or learning algorithms at both the theoretical and implementation levels. You will have the chance to solve complex scientific problems and see your solutions come to life in Amazon’s warehouses! Key job responsibilities - Research design - How should solve a particular research problem - Research delivery - Proving/dis-proving strategies in offline data or in simulation - Production studies - Insights from production data or ad-hoc experimentation - Prototype implementation - Building key parts of algorithms or model prototypes A day in the life On a typical day in this role you will work to progress your research projects, meet with engineering, systems, and solutions stakeholders, brainstorm with other scientists on the team, and participate in team processes. You will follow your research projects though the entire life cycle of design, implementation, evaluation, analysis, and will communicate your findings and results through technical papers and reports. You will consult with engineering teams as they incorporate your models and analyses into system and process designs. Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Our multi-disciplinary science team includes scientists with backgrounds in simulation, planning and scheduling, grasping and manipulation, machine learning, and operations research. We develop novel planning algorithms and machine learning methods and apply them to real-word robotic warehouses, including: * Planning and coordinating the paths of thousands of robots * Dynamic allocation and scheduling of tasks to thousands of robots * Learning how to adapt system behavior to varying operating conditions * Co-design of robotic logistics processes and the algorithms to optimize them Our team also serves as a hub to foster innovation and support scientists across Amazon Robotics. We also coordinate research engagements with academia, such as the Robotics section of the Amazon Research Awards.
US, WA, Seattle
This is an exciting opportunity to shape the future of AI and make a real impact on our customers' generative AI journeys. Join the Generative AI Innovation Center to help customers shape the future of Responsible Generative AI while prioritizing security, privacy, and ethical AI practices. In this role, you will play a pivotal role in guiding AWS customers on the responsible and secure adoption of Generative AI, with a focus on Amazon Bedrock, our fully managed service for building generative AI applications. AWS Generative AI Innovation Center is looking for a Generative AI Data Scientist, who will guide customers on operationalizing Generative AI workloads with appropriate guardrails and responsible AI best practices, including techniques for mitigating bias, ensuring fairness, vulnerability assessments, red teaming, model evaluations, hallucinations, grounding model responses, and maintaining transparency in generative AI models. You'll evangelize Responsible AI (RAI), help customers shape RAI policies, develop technical assets to support RAI policies including demonstrating guardrails for content filtering, redacting sensitive data, blocking inappropriate topics, and implementing customer-specific AI safety policies. The assets you develop, will equip AWS teams, partners, and customers to responsibly operationalize generative AI, from PoCs to production workloads. You will engage with policy makers, customers, AWS product owners to influence product direction and help our customers tap into new markets by utilizing GenAI along with AWS Services. As part of the Generative AI Worldwide Specialist organization, Innovation Center, you will interact with AI/ML scientists and engineers, develop white papers, blogs, reference implementations, and presentations to enable customers and partners to fully leverage Generative AI services on Amazon Web Services. You may also create enablement materials for the broader technical field population, to help them understand RAI and how to integrate AWS services into customer architectures. You must have deep understanding of Generative AI models, including their strengths, limitations, and potential risks. You should have expertise in Responsible AI practices, such as bias mitigation, fairness evaluation, and ethical AI principles. In addition you should have hands on experience with AI security best practices, including vulnerability assessments, red teaming, and fine grained data access controls. Candidates must have great communication skills and be very technical, with the ability to impress Amazon Web Services customers at any level, from executive to developer. Previous experience with Amazon Web Services is desired but not required, provided you have experience building large scale solutions. You will get the opportunity to work directly with senior ML engineers and Data Scientists at customers, partners and Amazon Web Services service teams, influencing their roadmaps and driving innovation. Travel up to 40% may be possible. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities - Guide customers on Responsible AI and Generative AI Security: Act as a trusted advisor to our customers, helping them navigate the complex world of Generative AI and ensure they are using it responsibly and securely. - Operationalize generative AI workloads: Support customers in taking their generative AI projects from proof-of-concept to production, implementing appropriate guardrails and best practices. - Demonstrate Generative AI Risks and Mitigations: Develop technical assets and content to educate customers on the risks of generative AI, including bias, offensive content, cyber threats, prompt hacking, and hallucinations. - Collaborate with GenAI Product/Engineering and Customer-Facing Builder Teams: Work closely with the Amazon Bedrock product and engineering teams and customer-facing builders to launch new services, support beta customers, and develop technical assets. - Thought Leadership and External Representation: Serve as a thought leader in the Generative AI space, representing AWS at industry events and conferences, such as AWS re:Invent. - Develop technical content, workshops, and thought leadership to enable the broader technical community, including Solution Architects, Data Scientists, and Technical Field Community members. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, IL, Chicago
Do you want to use your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If you do, People eXperience Technology Central Science (PXTCS) would love to talk to you about how to make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that both improve Amazonian’s wellbeing and their ability to deliver value for Amazon’s customers. We work with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. As an applied scientist on our team, you will work with business leaders, scientists, and economists to translate business and functional requirements into concrete deliverables, define the science vision and translate it into specific plans for applied scientists, as well as engineering and product teams. You will partner with scientists, economists, and engineers on the design, development, testing, and deployment of scalable ML and econometric models. This is a unique, high visibility opportunity for someone who wants to have impact, dive deep into large-scale solutions, enable measurable actions on the employee experience, and work closely with scientists and economists. This role combines science leadership, organizational ability, and technical strength. Key job responsibilities As an Applied Scientist, ML Applications, you will: • Design, develop, and evaluate innovative machine learning solutions to solve diverse challenges and opportunities for Amazon customers • Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. • Partner with the engineering team to deploy your models in production. • Partner with scientists from across PXTCS to solve complex problems and use your team’s expertise to accelerate their ability get their work into production. • Work directly with Amazonians from across the company to understand their business problems and help define and implement scalable ML solutions to solve them.
IL, Tel Aviv
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at anytime and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on. We are looking for an Applied Scientist to embark on our journey to build a Prime Video Sports tech team in Israel from ground up. Our team will focus on developing products to allow for personalizing the customers’ experience and providing them real-time insights and revolutionary experiences using Computer Vision (CV) and Machine Learning (ML). You will get a chance to work on greenfield, cutting-edge and large-scale engineering and science projects, and a rare opportunity to be one of the founders of the Israel Prime Video Sports tech team in Israel. Key job responsibilities We are looking for an Applied Scientist with domain expertise in Computer Vision or Recommendation Systems to lead development of new algorithms and E2E solutions. You will be part of a team of applied scientists and software development engineers responsible for research, design, development and deployment of algorithms into production pipelines. As a technologist, you will also drive publications of original work in top-tier conferences in Computer Vision and Machine Learning. You will be expected to deal with ambiguity! We're looking for someone with outstanding analytical abilities and someone comfortable working with cross-functional teams and systems. You must be a self-starter and be able to learn on the go. About the team In September 2018 Prime Video launched its first full-scale live streaming experience to world-wide Prime customers with NFL Thursday Night Football. That was just the start. Now Amazon has exclusive broadcasting rights to major leagues like NFL Thursday Night Football, Tennis major like Roland-Garros and English Premium League to list few and are broadcasting live events across 30+ sports world-wide. Prime Video is expanding not just the breadth of live content that it offers, but the depth of the experience. This is a transformative opportunity, the chance to be at the vanguard of a program that will revolutionize Prime Video, and the live streaming experience of customers everywhere.