The science of price experiments in the Amazon Store

The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The prices of products in the Amazon Store reflect a range of factors, such as demand, seasonality, and general economic trends. Pricing policies typically involve formulas that take such factors into account; newer pricing policies usually rely on machine learning models.

With the Amazon Pricing Labs, we can conduct a range of online A/B experiments to evaluate new pricing policies. Because we practice nondiscriminatory pricing — all visitors to the Amazon Store at the same time see the same prices for all products — we need to apply experimental treatments to product prices over time, rather than testing different price points simultaneously on different customers. This complicates the experimental design.

Related content
Amazon Scholar David Card on the revolution in economic research that he helped launch and its consequences for industry.

In a paper we published in the Journal of Business Economics in March and presented at the American Economics Association’s annual conference in January (AEA), we described some of the experiments we can conduct to prevent spillovers, improve precision, and control for demand trends and differences in treatment groups when evaluating new pricing policies.

The simplest type of experiment we can perform is a time-bound experiment, in which we apply a treatment to some products in a particular class, while leaving other products in the class untreated, as controls.

Time-bound experiment.png
A time-bound experiment, which begins at day eight, with treatments in red and controls in white.

One potential source of noise in this type of experiment is that an external event — say, a temporary discount on the same product at a different store — can influence treatment effects. If we can define these types of events in advance, we can conduct triggered interventions, in which we time the starts of our treatment and control periods to the occurrence of the events. This can result in staggered start times for experiments on different products.

Triggered interventions.png
The design of a triggered experiment. Red indicates treatment groups, and green indicates control groups. The start of each experiment is triggered by an external event.

If the demand curves for the products are similar enough, and the difference in results between the treatment group and the control group are dramatic enough, time-bound and triggered experiments may be adequate. But for more precise evaluation of a pricing policy, it may be necessary to run treatment and control experiments on the same product, as would be the case with typical A/B testing. That requires a switchback experiment.

Related content
Context vectors that capture “side information” can make experiments more informative.

The most straightforward switchback experiment is the random-days experiments, in which, each day, each product is randomly assigned to either the control group or the treatment group. Our analyses indicate that random days can reduce the standard error of our experimental results — that is, the extent to which the statistics of our observations differ, on average, from the true statistics of the intervention — by 60%.

Random days.png
A random-days experiment. The experiment begins on day 8; red represents treatment, white control.

One of the drawbacks with any switchback experiment, however, is the risk of carryover, in which the effects of a treatment carry over from the treatment phase of the experiment to the control phase. For instance, if treatment increases a product’s sales, recommendation algorithms may recommend that product more often. That could artificially boost the product’s sales even during control periods.

Related content
Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

We can combat carryover by instituting blackout periods during transitions to treatment and control phases. In a crossover experiment, for instance, we might apply a treatment to some products in a group, leaving the others as controls, but toss out the first week’s data for both groups. Then, after collecting enough data — say, two weeks’ worth — we remove the treatment from the former treatment group and apply it to the former control group. Once again, we throw out the first week’s data, to let the carryover effect die down.

Crossover experiment.png
A crossover experiment, with blackout periods at the beginning of each phase of the experiment. In week 7, the treatment (red) has been applied to products A, D, F, G, and J, but the data is thrown out. In week 10, the first treatment and control groups switch roles, but again, the first week’s data is thrown out.

Crossover experiments can reduce the standard error of our results measurements by 40% to 50%. That’s not quite as good as random days, but carryover effects are mitigated.

Heterogeneous panel treatment effect

The Amazon Pricing Labs also offers two more sophisticated means of evaluating pricing policies. The first of these is the heterogeneous panel treatment effect, or HPTE.

HPTE is a four-step process:

  1. Estimate product-level first difference from detrended data.
  2. Filter outliers.
  3. Estimate second difference from grouped products using causal forest.
  4. Bootstrap data to estimate noise.

Estimate product-level first difference from detrended data. In a standard difference-in-difference (DID) analysis, the first difference is the difference between the results for a single product before and after the experiment begins.

Related content
Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

Rather than simply subtracting the results before treatment from the results after treatment, however, we analyze historical trends to predict what would have happened if products were left untreated during the treatment period. We then subtract that prediction from the observed results.

Filter outliers. In pricing experiments, there are frequently unobserved factors that can cause extreme swings in our outcome measurements. We define a cutoff point for outliers as a percentage (quantile) of the results distribution that is inversely proportional to the number of products in the data. This approach has been used previously, but we validated it in simulations.

Estimate second difference from grouped products using causal forest. In DID analysis, the second difference is the difference between the treatment and control groups’ first differences. Because we’re considering groups of heterogeneous products, we calculate the second difference only for products that have strong enough affinities with each other to make the comparison informative. Then we average the second difference across products.

To compute affinity scores, we use a variation on decision trees called causal forests. A typical decision tree is a connected acyclic graph — a tree — each of whose nodes represents a question. In our case, those questions regard product characteristics — say, “Does it require replaceable batteries?”, or “Is its width greater than three inches?”. The answer to the question determines which branch of the tree to follow.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

A causal forest consists of many such trees. The questions are learned from the data, and they define the axes along which the data shows the greatest variance. Consequently, the data used to train the trees requires no labeling.

After training our causal forest, we use it to evaluate the products in our experiment. Products from the treatment and control groups that end up at the same terminal node, or leaf, of a tree are deemed similar enough that their second difference should be calculated.

Bootstrap data to estimate noise. To compute the standard error, we randomly sample products from our dataset and calculate their average treatment effect, then return them to the dataset and randomly sample again. Multiple resampling allows us to compute the variance in our outcome measures.

Spillover effect

At the Amazon Pricing Labs, we have also investigated ways to gauge the spillover effect, which occurs when treatment of one product causes a change in demand for another, similar product. This can throw off our measurements of treatment effect.

For instance, if a new pricing policy increases demand for, say, a particular kitchen chair, more customers will view that chair’s product page. Some fraction of those customers, however, may buy a different chair listed on the page’s “Discover similar items” section.

If the second chair is in the control group, its sales may be artificially inflated by the treatment of the first chair, leading to an underestimation of the treatment effect. If the second chair is in the treatment group, the inflation of its sales may lead to an overestimation of the treatment effect.

To correct for the spillover effect, we need to measure it. The first step in that process is to build a graph of products with correlated demand.

Related content
“Group testing” protocols tailored to particularities of the COVID-19 pandemic promise more-informative test results.

We begin with a list of products that are related to each other according to criteria such as their fine-grained classifications in the Amazon Store catalogue. For each pair of related items, we then look at a year’s worth of data to determine whether a change in the price of one affects demand for another. If those connections are strong enough, we join the products by an edge in our substitutable-items graph.

From the graph, we compute the probability that any given pair of substitutable products will find themselves included in the same experiment and which group, treatment or control, they’ll be assigned to. From those probabilities, we can use an inverse probability-weighting schema to estimate the effect of spillover on our observed outcomes.

Estimating spillover effect, however, is not as good as eliminating it. One way to do that is to treat substitutable products as a single product class and assign them to treatment or control groups en masse. This does reduce the power of our experiments, but it gives our business partners confidence that the results aren’t tainted by spillover.

To determine which products to include in each of our product classes, we use a clustering algorithm that searches the substitutable-product graph for regions of dense interconnection and severs those regions connections to the rest of the graph. In an iterative process, this partitions the graph into clusters of closely related products.

In simulations, we found that this clustering process can reduce spillover bias by 37%.

Research areas

Related content

AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. We are seeking a Principal Applied Scientist working on machine learning applications in life sciences. This role combines scientific leadership with hands-on innovation, driving solutions from exploratory research through production-ready solutions deployment, while maintaining high scientific standards. You will work with Amazon's large-scale computing resources to accelerate advances in machine learning applications. Key job responsibilities - Lead ML for life science efforts using computational design approaches and ML-based tools. - Guide teams in applying SOTA ML methods, experimentation design, and modeling approaches. - Transform complex real world problems into scientific challenges and allocate resources effectively. - Review requirements, conduct technical architecture reviews, and make informed judgments around technical and business tradeoffs. - Provide mentorship to Applied Scientists, Research Scientists and Data Scientists while maintaining scientific rigor. - Collaborate with cross functional teams.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.