Why ambient computing needs self-learning

To become the interface for the Internet of things, conversational agents will need to learn on their own. Alexa has already started down that path.

Today at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), Ruhi Sarikaya, the director of applied science for Alexa AI, delivered a keynote address titled “Intelligent Conversational Agents for Ambient Computing”. This is an edited version of that talk.

For decades, the paradigm of personal computing was a desktop machine. Then came the laptop, and finally mobile devices so small we can hold them in our hands and carry them in our pockets, which felt revolutionary.

All these devices, however, tether you to a screen. For the most part, you need to physically touch them to use them, which does not seem natural or convenient in a number of situations.

So what comes next?

The most likely answer is the Internet of things (IOT) and other intelligent, connected systems and services. What will the interface with the IOT be? Will you need a separate app on your phone for each connected device? Or when you walk into a room, will you simply speak to the device you want to reconfigure?

At Alexa, we’re betting that conversational AI will be the interface for the IOT. And this will mean a shift in our understanding of what conversational AI is.

Related content
Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

In particular, the IOT creates new forms of context for conversational-AI models. By “context”, we mean the set of circumstances and facts that surround a particular event, situation, or entity, which an AI model can exploit to improve its performance.

For instance, context can help resolve ambiguities. Here are some examples of what we mean by context:

  • Device state: If the oven is on, then the question “What is the temperature?” is more likely to refer to oven temperature than it is in other contexts.
  • Device types: If the device has a screen, it’s more likely that “play Hunger Games” refers to the movie than if the device has no screen.
  • Physical/digital activity: If a customer listens only to jazz, “Play music” should elicit a different response than if the customer listens only to hard rock; if the customer always makes coffee after the alarm goes off, that should influence the interpretation of a command like “start brewing”. 

The same type of reasoning applies to other contextual signals, such as time of day, device and user location, environmental changes as measured by sensors, and so on.

Training a conversational agent to factor in so many contextual signals is much more complicated than training it to recognize, say, song titles. Ideally, we would have a substantial number of training examples for every combination of customer, device, and context, but that’s obviously not practical. So how do we scale the training of contextually aware conversational agents?

Self-learning

The answer is self-learning. By self-learning, we mean a framework that enables an autonomous agent to learn from customer-system interactions, system signals, and predictive models.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Customer-system interactions can provide both implicit feedback and explicit feedback. Alexa already handles both. If a customer interrupts Alexa’s response to a request — a “barge-in”, as we call it — or rephrases the request, that’s implicit feedback. Aggregated across multiple customers, barge-ins and rephrases indicate requests that aren’t being processed correctly.

Customers can also explicitly teach Alexa how to handle particular requests. This can be customer-initiated, as when customers use Alexa’s interactive-teaching capability, or Alexa-initiated, as when Alexa asks, “Did I answer your question?”

The great advantages of self-learning are that it doesn’t require data annotation, so it scales better while protecting customer privacy; it minimizes the time and cost of updating models; and it relies on high-value training data, because customers know best what they mean and want.

We have a few programs targeting different applications of self-learning, including automated generation of ground truth annotations, defect reduction, teachable AI, and determining root causes of failure.

Automated ground truth generation

At Alexa, we have launched a multiyear initiative to shift Alexa’s ML model development from manual-annotation-based to primarily self-learning-based. The challenge we face is to convert customer feedback, which is often binary or low dimensional (yes/no, defect/non-defect), into high-dimensional synthetic labels such as transcriptions and named-entity annotations.

Our approach has two major components: (1) an exploration module and (2) a feedback collection and label generation module. Here’s the architecture of the label generation model:

Label generation model.png
The ground truth generation model converts customer feedback, which is often binary or low dimensional, into high-dimensional synthetic labels.

The input features include the dialogue context (user utterance, Alexa response, previous turns, next turns), categorical features (domain, intent, dialogue status), numerical features (number of tokens, speech recognition and natural-language-understanding confidence scores), and raw audio data. The model consists of a turn-level encoder and a dialogue-level Transformer-based encoder. The turn-level textual encoder is a pretrained RoBERTa model.

We pretrain the model in a self-supervised way, using synthetic contrastive data. For instance, we randomly swap answers from different dialogues as defect samples. After pretraining, the model is trained in a supervised fashion on multiple tasks, using explicit and implicit user feedback.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

We evaluate the label generation model on several tasks. Two of these are goal segmentation, or determining which utterances in a dialogue are relevant to the accomplishment of a particular task, and goal evaluation, or determining whether the goal was successfully achieved.

As a baseline for these tasks, we used a set of annotations each of which was produced in a single pass by a single annotator. Our ground truth, for both the model and the baseline, was a set of annotations each of which had been corroborated by three different human annotators.

Our model’s outputs on both tasks were comparable to the human annotators’: our model was slightly more accurate but had a slightly lower F1 score. We can set a higher threshold, exceeding human performance significantly, and still achieve much larger annotation throughput than manual labeling does.

In addition to the goal-related labels, our model also labels utterances according to intent (the action the customer wants performed, such as playing music), slots (the data types the intent operates on, such as song names), and slot-values (the particular values of the slots, such as “Purple Haze”).

As a baseline for slot and intent labeling, we used a RoBERTa-based model that didn’t incorporate contextual information, and we found that our model outperformed it across the board.

Self-learning-based defect reduction

Three years ago, we deployed a self-learning mechanism that automatically corrects defects in Alexa’s interpretation of customer utterances based purely on implicit signals.

Related content
More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

This mechanism — unlike the ground truth generation module — doesn’t involve retraining Alexa’s natural-language-understanding models. Instead, it overwrites those models’ outputs, to improve their accuracy.

There are two ways to provide rewrites:

  • Precomputed rewriting produces request-rewrite pairs offline and loads them at run time. This process has no latency constraints, so it can use complex models, and during training, it can take advantage of rich offline signals such as user follow-up turns, user rephrases, Alexa responses, and video click-through rate. Its drawback is that at run time, it can’t take advantage of contextual information.
  • Online rewriting leverages contextual information (e.g., previous dialogue turns, dialogue location, times) at run time to produce rewrites. It enables rewriting of long-tail-defect queries, but it must meet latency constraints, and its training can’t take advantage of offline information.

Precomputed rewriting

We’ve experimented with two different approaches to precomputing rewrite pairs, one that uses pretrained BERT models and one that uses absorbing Markov chains.

This slide illustrates the BERT-based approach:

Rephrase detection.png
The contextual rephrase detection model casts rephrase detection as a span prediction problem, predicting the probability that each token is the start or end of a span.

At left is a sample dialogue in which an Alexa customer rephrases a query twice. The second rephrase elicits the correct response, so it’s a good candidate for a rewrite of the initial query. The final query is not a rephrase, and the rephrase extraction model must learn to differentiate rephrases from unrelated queries.

We cast rephrase detection as a span prediction problem, where we predict the probability that each token is the start or end of a span, using the embedding output of the final BERT layer. We also use timestamping to threshold the number of subsequent customer requests that count as rephrase candidates.

We use absorbing Markov chains to extract rewrite pairs from rephrase candidates that recur across a wide range of interactions.

Absorbing Markov chains.png
The probabilities of sequences of rephrases across customer interactions can be encoded in absorbing Markov chains.

A Markov chain models a dynamic system as a sequence of states, each of which has a certain probability of transitioning to any of several other states. An absorbing Markov chain is one that has a final state, with zero probability of transitioning to any other, which is accessible from any other system state.

We use absorbing Markov chains to encode the probabilities that any given rephrase of the same query will follow any other across a range of interactions. Solving the Markov chain gives us the rewrite for any given request that is most likely to be successful.

Online rewriting

Instead of relying on customers’ own rephrasings, the online rewriting mechanism uses retrieval and ranking models to generate rewrites.

Rewrites are based on customers’ habitual usage patterns with the agent. In the example below, for instance, based on the customer’s interaction history, we rewrite the query “What’s the weather in Wilkerson?” as “What’s the weather in Wilkerson, California?” — even though “What’s the weather in Wilkerson, Washington?” is the more common query across interactions.

The model does, however, include a global layer as well as a personal layer, to prevent overindexing on personalized cases (for instance, inferring that a customer who likes the Selena Gomez song “We Don’t Talk Anymore” will also like the song from Encanto “We Don’t Talk about Bruno”) and to enable the model to provide rewrites when the customer’s interaction history provides little or no guidance.

Online rewriting.png
The online rewriting model’s personal layer factors in customer context, while the global prevents overindexing on personalized cases.

The personalized workstream and the global workstream include both retrieval and ranking models:

  • The retrieval model uses a dense-passage-retrieval (DPR) model, which maps texts into a low-dimensional, continuous space, to extract embeddings for both the index and the query. Then it uses some similarity measurement to decide the rewrite score.
  • The ranking model combines fuzzy match (e.g., through a single-encoder structure) with various metadata to make a reranking decision.

We’ve deployed all three of these self-learning approaches — BERT- and Markov-chain-based offline rewriting and online rewriting — and all have made a significant difference in the quality of Alexa customers’ experience.

Related content
With a new machine learning system, Alexa can infer that an initial question implies a subsequent request.

In experiments, we compared the BERT-based offline approach to four baseline models on six machine-annotated and two human-annotated datasets, and it outperformed all baselines across the board, with improvements of as much as 16% to 17% on some of the machine-annotated datasets, while almost doubling the improvement on the human-annotated ones.

The offline approach that uses absorbing Markov chains has rewritten tens of millions of outputs from Alexa’s automatic-speech-recognition models, and it has a win-loss ratio of 8.5:1, meaning that for every one incorrect rewrite, it has 8.5 correct ones.

And finally, in a series of A/B tests of the online rewrite engine, we found that the global rewrite alone reduced the defect rate by 13%, while the addition of the personal rewrite model reduced defects by a further 4%.

Teachable AI

Query rewrites depend on implicit signals from customers, but customers can also explicitly teach Alexa their personal preferences, such as “I’m a Warriors fan” or “I like Italian restaurants.”

Related content
Deep learning and reasoning enable customers to explicitly teach Alexa how to interpret their novel requests.

Alexa’s teachable-AI mechanism can be either customer-initiated or Alexa-initiated. Alexa proactively senses teachable moments — as when, for instance, a customer repeats the same request multiple times or declares Alexa’s response unsatisfactory. And a customer can initiate a guided Q&A with Alexa with a simple cue like “Alexa, learn my preferences.”

In either case, Alexa can use the customer’s preferences to guide the very next customer interaction.

Failure point isolation

Besides recovering from defects through query rewriting, we also want to understand the root cause of failures for defects.

Dialogue assistants like Alexa depend on multiple models that process customer requests in stages. First, a voice trigger (or “wake word”) model determines whether the user is speaking to the assistant. Then an automatic-speech-recognition (ASR) module converts the audio stream into text. This text passes to a natural-language-understanding (NLU) component that determines the user request. An entity recognition model recognizes and resolves entities, and the assistant generates the best possible response using several subsystems. Finally, the text-to-speech (TTS) model renders the response into human-like speech.

For Alexa, part of self-learning is automatically determining, when a failure occurs, which component has failed. An error in an upstream component can propagate through the pipeline, in which case multiple components may fail. Thus, we focus on the first component that fails in a way that is irrecoverable, which we call the “failure point”.

In our initial work on failure point isolation, we recognize five error points as well as a “correct” class (meaning no component failed). The possible failure points are false wake (errors in voice trigger); ASR errors; NLU errors (for example, incorrectly routing “play Harry Potter” to video instead of audiobook); entity resolution and recognition errors; and result errors (for example, playing the wrong Harry Potter movie).

To better illustrate failure point problem, let's examine a multiturn dialogue:

Failure point isolation slide.png
Failure point isolation identifies the earliest point in the processing pipeline at which a failure occurs, and errors that the conversational agent recovers from are not classified as failures.

In the first turn, the customer is trying to open a garage door, and the conversational assistant recognizes the speech incorrectly. The entity resolution model doesn't recover from this error and also fails. Finally, the dialogue assistant fails to perform the correct action. In this case, ASR is the failure point, despite the other models’ subsequent failure.

On the second turn, the customer repeats the request. ASR makes a small error by not recognizing the article "the" in the speech, but the dialogue assistant takes the correct action. We would mark this turn as correct, as the ASR error didn't lead to downstream failure.

The last turn highlights one of the limitations of our method. The user is asking the dialogue assistant to make a sandwich, which dialogue assistants cannot do — yet. All models have worked correctly, but the user is not satisfied. In our work, we do not consider such turns defective.

On average, our best failure point isolation model achieves close to human performance across different categories (>92% vs human). This model uses extended dialogue context, features derived from logs of the assistants (e.g., ASR confidence), and traces of decision-making components (e.g., NLU modules). We outperform humans in result and correct-class detection. ASR, entity resolution, and NLU are in the 90-95% range.

The day when computing fades into the environment, and we walk from room to room casually instructing embedded computing devices how we want them to behave, may still lie in the future. But at Alexa AI, we’re already a long way down that path. And we’re moving farther forward every day.

Related content

US, WA, Bellevue
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing groundbreaking products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team! Key job responsibilities * Design, develop, and evaluate highly innovative models for Natural Language Programming (NLP), Large Language Model (LLM), or Large Computer Vision Models. * Use SQL to query and analyze the data. * Use Python, Jupyter notebook, and Pytorch to train/test/deploy ML models. * Use machine learning and analytical techniques to create scalable solutions for business problems. * Research and implement novel machine learning and statistical approaches. * Mentor interns. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. A day in the life If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! Benefits: Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan Learn more about our benefits here: https://amazon.jobs/en/internal/benefits/us-benefits-and-stock About the team When a customer returns a package to Amazon, the request and package will be passed through our WWRR machine learning (ML) systems so that we could improve the customer experience, identify return root cause, optimize re-use, and evaluate the returned package. Our problems touch multiple modalities spanning from: textual, categorical, image, to speech data. We operate at large scale and rely on state-of-the-art modeling techniques to power our ML models: XGBoost, BERT, Vision Transformers, Large Language Models.
US, CA, Santa Clara
Amazon CloudWatch is the native AWS monitoring and observability service for cloud resources and applications. We are seeking a talented Senior Applied Scientist to develop next-generation scientific methods and infrastructure to support a core AWS business that delivers critical services to millions of customers operating at scale. This is a high visibility and high impact role that work on highly strategic projects in the AI/ML and Analytics space, will interact with all levels of AWS leadership. We are developing solutions that not only surface the “what” but also the “why” and “how to fix it”, without requiring operators to have extensive domain knowledge and technical expertise to efficiently troubleshoot and remediate incidents. Using decades of AWS operational excellence coupled with the advances in LLMs and Gen-AI technologies, we are transforming the very core of how customers can effortlessly interact with our offerings to build and operate their applications in the cloud. We are hiring to grow our team, and are looking for well-rounded applied scientists with backgrounds in machine learning, foundation models, and natural language processing. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, mission driven team, then this is your moment to join us on this exciting journey! Key job responsibilities As an Applied Scientist II you will be responsible for * Research and development of algorithms that improve training of foundation models across pre-training, multitask learning, supervised finetuning, and reinforcement learning from human feedback * Research and development of novel approaches for anomaly detection, root cause analysis, and provide intelligent insights from vast amounts of monitoring and observability data * Collaborating with scientists, engineers, and Product Managers across CloudWatch team as well as directly with customers * Lead key science initiatives in strategic investment areas of AI/ML/LLM Ops and Observability * Be an industry thought leader representing Amazon at top-tier scientific conferences * Engaging in the hiring process and developing, growing, and mentoring junior scientists A day in the life Working closely with and across agile teams, you will be able to see and feel the impact of your work on our customers. This is a high visibility and high impact role that will interact with all levels of AWS leadership. Our ideal candidate is excited about the incredible opportunity that cloud monitoring represents and is deeply passionate about delivering the highest quality services leveraging AI/ML/LLMs. You’re naturally customer centric and thrive in a fast-paced environment that requires strong technical and business judgment and solid communication skills. About the team Amazon CloudWatch Logs is a core monitoring service used by millions of AWS customers. We move fast and have delivered remarkable products and features over the last few years to streamline how AWS customers troubleshoot their critical applications. Our mission is to be the most cost effective, integrated, fast, and secure logs management and analytics platform for AWS customers. We are a diverse group of product and engineering professionals that are passionate about delivering logging features that delight customers operating at any scale. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.
NL, Amsterdam
Are you interested in creating a large business impact on millions of customers through the use of machine learning and analytics? We are seeking an Data Scientist to join our PriMA (Prime & Marketing) science team to model customer behavior, improve the engagement of our existing customers, and help us grow our customer base. In this role, you will collaborate with cross-functional teams and stakeholders to solve problems, and you will regularly interact with software engineering teams and business leadership. Some of the technical challenges you will contribute in this role are: - Measuring marketing campaigns across external marketing channels (Youtube, TikTok, Google,....) - Modeling the causal impact that some actions have over customers. - Building better product recommendation for deals and promotions at Amazon Key job responsibilities - Develop accurate and scalable data science models to address business use cases ranging from: analyzing customer behavior, building recommender systems to increase engagement, or measuring the impact of marketing channels. - Partner with engineers and applied scientists to implement data science solutions for complex business problems, guiding the application of best practices in data analysis, statistical modeling, and machine learning. - Lead comprehensive data analyses to provide insights and recommendations that help management and business stakeholders make key strategic decisions. About the team The PRIMAS (Prime & Marketing Analytics and Science) is the team that support the science & analytics needs of the EU Prime and Marketing organization, an org that supports the Prime and Marketing programs in European marketplaces and comprises 250-300 employees. The PRIMAS team, is part of a larger tech tech team of 50 people (comprising other job families like SDEs) that gives support to all the tech needs of the Prime & marketing org.
BR, SP, Sao Paulo
Esta é uma posição de colaborador individual, com base em nosso escritório de São Paulo. Procuramos uma pessoa dinâmica, analítica, inovadora, orientada para a prática e com foco inabalável no cliente. Na Amazon, nosso objetivo é exceder as expectativas dos clientes, garantindo que seus pedidos sejam entregues com máxima rapidez, precisão e eficiência de custo. A determinação da rota de cada pacote é realizada por sistemas complexos, que precisam acompanhar o crescimento acelerado e a complexidade da malha logística no Brasil. Diante desse cenário, a equipe de Otimização de Supply Chain está à procura de um cientista de dados experiente, capaz de desenvolver modelos, ferramentas e processos para garantir confiabilidade, agilidade, eficiência de custos e a melhor utilização dos ativos. O candidato ideal terá sólidas habilidades quantitativas e experiência com conjuntos de dados complexos, sendo capaz de identificar tendências, inovar processos e tomar decisões baseadas em dados, considerando a cadeia de suprimentos de ponta a ponta. Key job responsibilities * Executar projetos de melhoria contínua na malha logística, aproveitando boas práticas de outros países e/ou desenvolvendo novos modelos. * Desenvolver modelos de otimização e cenários para planejamentos logísticos. * Criar modelos de otimização voltados para a execução de eventos e períodos de alta demanda. Automatizar processos manuais para melhorar a produtividade da equipe. * Auditar operações, configurações sistêmicas e processos que possam impactar custos, produtividade e velocidade de entregas. * Realizar benchmarks com outros países para identificar melhores práticas e processos avançados, conectando-os às operações no Brasil. About the team Nosso time é composto por engenheiros de dados, gerentes de projetos e cientistas de dados, todos dedicados a criar soluções escaláveis e inovadoras que suportem e otimizem as operações logísticas da Amazon no Brasil. Nossa missão é garantir a eficiência de todas as etapas da cadeia de suprimentos, desde a primeira até a última milha, ajudando a Amazon a entregar resultados com agilidade, precisão e a um custo competitivo, especialmente em um ambiente de rápido crescimento e complexidade.
US, CA, San Francisco
We are hiring an Economist with the ability to disambiguate very challenging structural problems in two and multi-sided markets. The right hire will be able to get dirty with the data to come up with stylized facts, build reduced form model that motivate structural assumptions, and build to more complex structural models. The main use case will be understanding the incremental effects of subsidies to a two sided market relate to sales motions characterized by principal agent problems. Key job responsibilities This role with interface directly with product owners, scientists/economists, and leadership to create multi-year research agendas that drive step change growth for the business. The role will also be an important collaborator with other science teams at AWS. A day in the life Our team takes big swings and works on hard cross organizational problems where the optimal success rate is not 100%. We also ask people to grow their skills and stretch and make sure we do it in a supportive and fun environment. It’s about empirically measured impact, advancement, and fun on our team. We work hard during work hours but we also don’t encourage working at nights or on weekends except in very rare, high stakes cases. Burn out isn’t a successful long run strategy. Because we invest in the long run success of our group it’s important to have hobbies, relax and then come to work refreshed and excited. It makes for bigger impact, faster skill accrual and thus career advancement. About the team Our group is technically rigorous and encourages ongoing academic conference participation and publication. Our leaders are here for you and to enable you to be successful. We believe in being servant leaders focused on influence: good data work has little value if it doesn’t translate into actionable insights that are rolled out and impact the real economy. We are communication centric since being able to explain what we do ensures high success rates and lowers administrative churn. Also: we laugh a lot. If it’s not fun, what’s the point?
US, CA, San Diego
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. As an Applied Scientist, you will be working closely with a team of applied scientists and engineers to build systems that shape the future of Amazon's by automatically generating relevant content and building a whole page experience that is coherent, dynamic, and interesting. You will improve ranking and optimization in our algorithm. You will participate in driving features from idea to deployment, and your work will directly impact millions of customers.
US, WA, Seattle
Amazon is the 4th most popular site in the US. Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include: - Can combining supervised multi-task training with unsupervised training help us to improve model accuracy? - Can we transfer our knowledge of the customer to every language and every locale ? - Can we build foundational ML models that can serve different business lines. This is a unique opportunity to get in on the ground floor, shape, and build the next-generation of Amazon ML. We are looking for exceptional scientists and ML engineers who are passionate about innovation and impact, and want to work in a team with a startup culture within a larger organization. Key job responsibilities Train large deep learning models with hundreds of billions parameters. Build foundational ML models that can be applied to different business applications in Amazon such as Search and Ads. Areas of interest include efficient model architecture, training and data optimization/scaling, model/data/pipeline parallel techniques, and much more.
US, WA, Bellevue
Ring is looking for a Senior Applied Science Manager to lead the development of computer vision algorithm on the Edge. In this role, you will be the leader of our passionate, talented, and inventive scientists, to develop industry-leading Computer Vision (CV), Multimodal, and AI and drive them successfully to production for the benefit of millions of Amazon Devices users. This is a unique, high visibility opportunity for a leader who wants to have business impact, and dive deep into computer vision problems. We are particularly interested in candidates with experience productizing edge-based computer vision systems. Key job responsibilities As a Senior Manager, Applied Science, you bring structure to ambiguous business problems and use science, logic, and practical experience to decompose them into straightforward, scalable solutions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems; you're interested in learning; and you acquire skills and expertise as needed. The ideal candidate is a strong, creative and highly-motivated Scientist with hands-on experience in leading multiple research and engineering initiatives. You balance technical leadership with strong business judgment to make the right decisions about technology, tools, and methodologies.
US, MA, Boston
The Automated Reasoning Group is looking for a Applied Scientist with expertise in programming language semantics and deductive verification techniques (e.g. Lean, Dafny) to deliver novel code reasoning capabilities at scale. You will be part of a larger organization that develops a spectrum of formal software analysis tools and applies them to software at all levels of abstraction from assembler through high-level programming languages. You will work with a team of world class automated reasoning experts to deliver code reasoning technology that is accessible to all developers.