Why ambient computing needs self-learning

To become the interface for the Internet of things, conversational agents will need to learn on their own. Alexa has already started down that path.

Today at the annual meeting of the ACM Special Interest Group on Information Retrieval (SIGIR), Ruhi Sarikaya, the director of applied science for Alexa AI, delivered a keynote address titled “Intelligent Conversational Agents for Ambient Computing”. This is an edited version of that talk.

For decades, the paradigm of personal computing was a desktop machine. Then came the laptop, and finally mobile devices so small we can hold them in our hands and carry them in our pockets, which felt revolutionary.

All these devices, however, tether you to a screen. For the most part, you need to physically touch them to use them, which does not seem natural or convenient in a number of situations.

So what comes next?

The most likely answer is the Internet of things (IOT) and other intelligent, connected systems and services. What will the interface with the IOT be? Will you need a separate app on your phone for each connected device? Or when you walk into a room, will you simply speak to the device you want to reconfigure?

At Alexa, we’re betting that conversational AI will be the interface for the IOT. And this will mean a shift in our understanding of what conversational AI is.

Related content
Alexa’s chief scientist on how customer-obsessed science is accelerating general intelligence.

In particular, the IOT creates new forms of context for conversational-AI models. By “context”, we mean the set of circumstances and facts that surround a particular event, situation, or entity, which an AI model can exploit to improve its performance.

For instance, context can help resolve ambiguities. Here are some examples of what we mean by context:

  • Device state: If the oven is on, then the question “What is the temperature?” is more likely to refer to oven temperature than it is in other contexts.
  • Device types: If the device has a screen, it’s more likely that “play Hunger Games” refers to the movie than if the device has no screen.
  • Physical/digital activity: If a customer listens only to jazz, “Play music” should elicit a different response than if the customer listens only to hard rock; if the customer always makes coffee after the alarm goes off, that should influence the interpretation of a command like “start brewing”. 

The same type of reasoning applies to other contextual signals, such as time of day, device and user location, environmental changes as measured by sensors, and so on.

Training a conversational agent to factor in so many contextual signals is much more complicated than training it to recognize, say, song titles. Ideally, we would have a substantial number of training examples for every combination of customer, device, and context, but that’s obviously not practical. So how do we scale the training of contextually aware conversational agents?

Self-learning

The answer is self-learning. By self-learning, we mean a framework that enables an autonomous agent to learn from customer-system interactions, system signals, and predictive models.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Customer-system interactions can provide both implicit feedback and explicit feedback. Alexa already handles both. If a customer interrupts Alexa’s response to a request — a “barge-in”, as we call it — or rephrases the request, that’s implicit feedback. Aggregated across multiple customers, barge-ins and rephrases indicate requests that aren’t being processed correctly.

Customers can also explicitly teach Alexa how to handle particular requests. This can be customer-initiated, as when customers use Alexa’s interactive-teaching capability, or Alexa-initiated, as when Alexa asks, “Did I answer your question?”

The great advantages of self-learning are that it doesn’t require data annotation, so it scales better while protecting customer privacy; it minimizes the time and cost of updating models; and it relies on high-value training data, because customers know best what they mean and want.

We have a few programs targeting different applications of self-learning, including automated generation of ground truth annotations, defect reduction, teachable AI, and determining root causes of failure.

Automated ground truth generation

At Alexa, we have launched a multiyear initiative to shift Alexa’s ML model development from manual-annotation-based to primarily self-learning-based. The challenge we face is to convert customer feedback, which is often binary or low dimensional (yes/no, defect/non-defect), into high-dimensional synthetic labels such as transcriptions and named-entity annotations.

Our approach has two major components: (1) an exploration module and (2) a feedback collection and label generation module. Here’s the architecture of the label generation model:

Label generation model.png
The ground truth generation model converts customer feedback, which is often binary or low dimensional, into high-dimensional synthetic labels.

The input features include the dialogue context (user utterance, Alexa response, previous turns, next turns), categorical features (domain, intent, dialogue status), numerical features (number of tokens, speech recognition and natural-language-understanding confidence scores), and raw audio data. The model consists of a turn-level encoder and a dialogue-level Transformer-based encoder. The turn-level textual encoder is a pretrained RoBERTa model.

We pretrain the model in a self-supervised way, using synthetic contrastive data. For instance, we randomly swap answers from different dialogues as defect samples. After pretraining, the model is trained in a supervised fashion on multiple tasks, using explicit and implicit user feedback.

Related content
Prime Video beats previous state of the art on the MovieNet dataset by 13% with a new model that is 90% smaller and 84% faster.

We evaluate the label generation model on several tasks. Two of these are goal segmentation, or determining which utterances in a dialogue are relevant to the accomplishment of a particular task, and goal evaluation, or determining whether the goal was successfully achieved.

As a baseline for these tasks, we used a set of annotations each of which was produced in a single pass by a single annotator. Our ground truth, for both the model and the baseline, was a set of annotations each of which had been corroborated by three different human annotators.

Our model’s outputs on both tasks were comparable to the human annotators’: our model was slightly more accurate but had a slightly lower F1 score. We can set a higher threshold, exceeding human performance significantly, and still achieve much larger annotation throughput than manual labeling does.

In addition to the goal-related labels, our model also labels utterances according to intent (the action the customer wants performed, such as playing music), slots (the data types the intent operates on, such as song names), and slot-values (the particular values of the slots, such as “Purple Haze”).

As a baseline for slot and intent labeling, we used a RoBERTa-based model that didn’t incorporate contextual information, and we found that our model outperformed it across the board.

Self-learning-based defect reduction

Three years ago, we deployed a self-learning mechanism that automatically corrects defects in Alexa’s interpretation of customer utterances based purely on implicit signals.

Related content
More-autonomous machine learning systems will make Alexa more self-aware, self-learning, and self-service.

This mechanism — unlike the ground truth generation module — doesn’t involve retraining Alexa’s natural-language-understanding models. Instead, it overwrites those models’ outputs, to improve their accuracy.

There are two ways to provide rewrites:

  • Precomputed rewriting produces request-rewrite pairs offline and loads them at run time. This process has no latency constraints, so it can use complex models, and during training, it can take advantage of rich offline signals such as user follow-up turns, user rephrases, Alexa responses, and video click-through rate. Its drawback is that at run time, it can’t take advantage of contextual information.
  • Online rewriting leverages contextual information (e.g., previous dialogue turns, dialogue location, times) at run time to produce rewrites. It enables rewriting of long-tail-defect queries, but it must meet latency constraints, and its training can’t take advantage of offline information.

Precomputed rewriting

We’ve experimented with two different approaches to precomputing rewrite pairs, one that uses pretrained BERT models and one that uses absorbing Markov chains.

This slide illustrates the BERT-based approach:

Rephrase detection.png
The contextual rephrase detection model casts rephrase detection as a span prediction problem, predicting the probability that each token is the start or end of a span.

At left is a sample dialogue in which an Alexa customer rephrases a query twice. The second rephrase elicits the correct response, so it’s a good candidate for a rewrite of the initial query. The final query is not a rephrase, and the rephrase extraction model must learn to differentiate rephrases from unrelated queries.

We cast rephrase detection as a span prediction problem, where we predict the probability that each token is the start or end of a span, using the embedding output of the final BERT layer. We also use timestamping to threshold the number of subsequent customer requests that count as rephrase candidates.

We use absorbing Markov chains to extract rewrite pairs from rephrase candidates that recur across a wide range of interactions.

Absorbing Markov chains.png
The probabilities of sequences of rephrases across customer interactions can be encoded in absorbing Markov chains.

A Markov chain models a dynamic system as a sequence of states, each of which has a certain probability of transitioning to any of several other states. An absorbing Markov chain is one that has a final state, with zero probability of transitioning to any other, which is accessible from any other system state.

We use absorbing Markov chains to encode the probabilities that any given rephrase of the same query will follow any other across a range of interactions. Solving the Markov chain gives us the rewrite for any given request that is most likely to be successful.

Online rewriting

Instead of relying on customers’ own rephrasings, the online rewriting mechanism uses retrieval and ranking models to generate rewrites.

Rewrites are based on customers’ habitual usage patterns with the agent. In the example below, for instance, based on the customer’s interaction history, we rewrite the query “What’s the weather in Wilkerson?” as “What’s the weather in Wilkerson, California?” — even though “What’s the weather in Wilkerson, Washington?” is the more common query across interactions.

The model does, however, include a global layer as well as a personal layer, to prevent overindexing on personalized cases (for instance, inferring that a customer who likes the Selena Gomez song “We Don’t Talk Anymore” will also like the song from Encanto “We Don’t Talk about Bruno”) and to enable the model to provide rewrites when the customer’s interaction history provides little or no guidance.

Online rewriting.png
The online rewriting model’s personal layer factors in customer context, while the global prevents overindexing on personalized cases.

The personalized workstream and the global workstream include both retrieval and ranking models:

  • The retrieval model uses a dense-passage-retrieval (DPR) model, which maps texts into a low-dimensional, continuous space, to extract embeddings for both the index and the query. Then it uses some similarity measurement to decide the rewrite score.
  • The ranking model combines fuzzy match (e.g., through a single-encoder structure) with various metadata to make a reranking decision.

We’ve deployed all three of these self-learning approaches — BERT- and Markov-chain-based offline rewriting and online rewriting — and all have made a significant difference in the quality of Alexa customers’ experience.

Related content
With a new machine learning system, Alexa can infer that an initial question implies a subsequent request.

In experiments, we compared the BERT-based offline approach to four baseline models on six machine-annotated and two human-annotated datasets, and it outperformed all baselines across the board, with improvements of as much as 16% to 17% on some of the machine-annotated datasets, while almost doubling the improvement on the human-annotated ones.

The offline approach that uses absorbing Markov chains has rewritten tens of millions of outputs from Alexa’s automatic-speech-recognition models, and it has a win-loss ratio of 8.5:1, meaning that for every one incorrect rewrite, it has 8.5 correct ones.

And finally, in a series of A/B tests of the online rewrite engine, we found that the global rewrite alone reduced the defect rate by 13%, while the addition of the personal rewrite model reduced defects by a further 4%.

Teachable AI

Query rewrites depend on implicit signals from customers, but customers can also explicitly teach Alexa their personal preferences, such as “I’m a Warriors fan” or “I like Italian restaurants.”

Related content
Deep learning and reasoning enable customers to explicitly teach Alexa how to interpret their novel requests.

Alexa’s teachable-AI mechanism can be either customer-initiated or Alexa-initiated. Alexa proactively senses teachable moments — as when, for instance, a customer repeats the same request multiple times or declares Alexa’s response unsatisfactory. And a customer can initiate a guided Q&A with Alexa with a simple cue like “Alexa, learn my preferences.”

In either case, Alexa can use the customer’s preferences to guide the very next customer interaction.

Failure point isolation

Besides recovering from defects through query rewriting, we also want to understand the root cause of failures for defects.

Dialogue assistants like Alexa depend on multiple models that process customer requests in stages. First, a voice trigger (or “wake word”) model determines whether the user is speaking to the assistant. Then an automatic-speech-recognition (ASR) module converts the audio stream into text. This text passes to a natural-language-understanding (NLU) component that determines the user request. An entity recognition model recognizes and resolves entities, and the assistant generates the best possible response using several subsystems. Finally, the text-to-speech (TTS) model renders the response into human-like speech.

For Alexa, part of self-learning is automatically determining, when a failure occurs, which component has failed. An error in an upstream component can propagate through the pipeline, in which case multiple components may fail. Thus, we focus on the first component that fails in a way that is irrecoverable, which we call the “failure point”.

In our initial work on failure point isolation, we recognize five error points as well as a “correct” class (meaning no component failed). The possible failure points are false wake (errors in voice trigger); ASR errors; NLU errors (for example, incorrectly routing “play Harry Potter” to video instead of audiobook); entity resolution and recognition errors; and result errors (for example, playing the wrong Harry Potter movie).

To better illustrate failure point problem, let's examine a multiturn dialogue:

Failure point isolation slide.png
Failure point isolation identifies the earliest point in the processing pipeline at which a failure occurs, and errors that the conversational agent recovers from are not classified as failures.

In the first turn, the customer is trying to open a garage door, and the conversational assistant recognizes the speech incorrectly. The entity resolution model doesn't recover from this error and also fails. Finally, the dialogue assistant fails to perform the correct action. In this case, ASR is the failure point, despite the other models’ subsequent failure.

On the second turn, the customer repeats the request. ASR makes a small error by not recognizing the article "the" in the speech, but the dialogue assistant takes the correct action. We would mark this turn as correct, as the ASR error didn't lead to downstream failure.

The last turn highlights one of the limitations of our method. The user is asking the dialogue assistant to make a sandwich, which dialogue assistants cannot do — yet. All models have worked correctly, but the user is not satisfied. In our work, we do not consider such turns defective.

On average, our best failure point isolation model achieves close to human performance across different categories (>92% vs human). This model uses extended dialogue context, features derived from logs of the assistants (e.g., ASR confidence), and traces of decision-making components (e.g., NLU modules). We outperform humans in result and correct-class detection. ASR, entity resolution, and NLU are in the 90-95% range.

The day when computing fades into the environment, and we walk from room to room casually instructing embedded computing devices how we want them to behave, may still lie in the future. But at Alexa AI, we’re already a long way down that path. And we’re moving farther forward every day.

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team