careers-lead-image

Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds across diverse fields including artificial intelligence, robotics, computer vision, economics, and sustainability. Join us in pioneering solutions to complex challenges that not only delight our customers but also help define the future of technology.
  • The program is designed for academics from universities around the globe who want to work on large-scale technical challenges while continuing to teach and conduct research at their universities.
  • The program offers recent PhD graduates an opportunity to advance research while working alongside experienced scientists with backgrounds in industry and academia.
  • Our internship roles span research areas to provide hands-on experience working alongside world-class scientists and engineers to advance the state of the art in your field.
464 results found
  • CA, ON, Toronto
    Job ID: 3145985
    (Updated 1 days ago)
    The CloudTune team within Amazon's Intelligent Cloud Control organization is seeking a passionate and innovative Applied Scientist II to be a core contributor in our mission to automate Amazon’s scaling and infrastructure spend planning. Our goal is to invent and implement machine learning and statistical software systems that remove human decision-making from SDO's scaling and cost controllership processes. You will apply state-of-the-art forecasting, optimization, and control algorithms to drive end-to-end automation, provisioning Amazon's services appropriately for a great customer experience while optimizing for availability and cost. This role offers enormous impact, eliminating vast quantities of undifferentiated and often tedious work for tens of thousands of Amazon developers across major business lines like Retail, Alexa, and Prime Video. You will be tackling challenging scalability, efficiency, and distributed systems design problems using very large volumes of data. You must be able to think big, contributing both to the research and the production deployment of high-impact algorithms. Key job responsibilities Design, implement, and evaluate advanced statistical and machine learning models for forecasting, anomaly detection, and capacity optimization at Amazon scale. Collaborate closely with engineering teams to integrate models into production systems, ensuring scalability, efficiency, and reliability. Conduct rigorous experimentation and A/B testing to measure the business impact of new algorithms on cost, availability, and customer experience. Investigate, prototype, and deliver innovative system solutions to increasingly complex distributed systems challenges. Communicate technical design, research findings, and product strategy clearly and precisely to technical and non-technical stakeholders, including senior leadership. About the team CloudTune is part of Amazon's Intelligent Cloud Control organization, dedicated to inventing software systems that remove human decision-making from SDO’s scaling and infrastructure spend planning. Our core mission is to drive end-to-end automation to provision Amazon's services—optimizing simultaneously for a great customer experience, high availability, and reduced cost. The solutions we build eliminate vast quantities of undifferentiated and tedious work, creating an enormous impact for tens of thousands of Amazon developers across the company. We are a high-leverage team focused on innovative, large-scale systems that define the future of Amazon's growth and efficiency.
  • (Updated 47 days ago)
    Within Amazon’s Corporate Financial Planning & Analysis team (FP&A), we enjoy a unique vantage point into everything happening within Amazon. This is exciting opportunity for scientist to join our Financial Transformation team, where you will get to harness the power of statistical and machine learning models to revolutionize finance forecasting that spans entire company and business units. As a key player in this innovative group, you'll be at the forefront of applying state-of-the-art scientific approaches and emerging technologies to solve complex financial challenges. Your deep domain expertise will be instrumental in identifying and addressing customer needs, often venturing into uncharted territories where textbook solutions don't exist. You'll have the chance to author Finance AI articles, showcasing your novel work to both internal and external audiences. Key job responsibilities Your role will involve developing production-ready science models/components that directly impact large-scale systems and services, making critical decisions on implementation complexity and technology adoption. You'll be a driving force in MLOps, optimizing compute and inference usage and enhancing system performance. Beyond technical prowess, you'll contribute to financial strategic planning, mentor team members, and represent our tech. organization in the broader scientific community. This role offers a perfect blend of hands-on development, strategic thinking, and thought leadership in the exciting intersection of finance and advanced analytics. Ready to shape the future of financial forecasting? Join us and let's transform the industry together!
  • US, CA, Santa Clara
    Job ID: 3155621
    (Updated 14 days ago)
    Amazon is looking for a motivated individual with strong analytical and algorithmic skills and practical experience to join the Modeling and Optimization (MOP) Routing Science team. Your main focus will be on developing and improving our last-mile experience, with emphasis on algorithmic and analytical work. We are looking for candidates with proven ability to design, implement, and evaluate state-of-the-art solutions to large-scale optimization problems, working closely with software development engineers. The position requires strong background in combinatorial optimization, algorithms, algorithm engineering, and data structures, particularly as it applies to vehicle routing and related problems. Familiarity with Data Science and Machine Learning techniques is a plus. You will also play an integral role in the network planning, modeling, and analysis that will improve the efficiency and cost effectiveness of global fulfillment operations. You will identify and evaluate opportunities to reduce variable costs by improving the transportation network topology, inventory placement, transportation operations and scheduling, fulfillment center processes, and the execution to operational plans. You will also improve the efficiency of capital investment by helping plan the location and deployment of fixed assets. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools.
  • US, WA, Seattle
    Job ID: 3156475
    (Updated 1 days ago)
    Take Earth's most customer-centric company. Mix in hundreds of millions of shoppers spending tens of billions of dollars annually, an exciting opportunity to build next-generation shopping experiences, Amazon’s tremendous computational resources, and our extensive e-Commerce experience. What do you get? The most exciting position in the industry. About our organization: Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, big data, distributed systems, and user experience design to deliver the best shopping experiences for our customers. We run global experiments and our work has revolutionized e-commerce with features such as "Keep shopping for", "Tap to explore", “Customers who bought this item also bought”, and “Frequently bought together” among others. Amazon’s internal surveys regularly recognize us as one of the best engineering organizations to work for in the company, with visible high-impact work, low operational load, respectful work-life balance, and continual opportunity to learn and grow. You will play a critical role in ideation for the team. We are building the next generation ML systems that powers the biggest shopping engine on earth, and we hope you will join us! Key job responsibilities As an Applied Scientist on the team you will be working on the state of art ways to help customers find the right products and content on their shopping journey. Our goal is to help customers achieve their objective seamlessly while shopping on Amazon. We are investing in multiple fronts including but not limited to GenerativeAI, LLMs, transformers, sequence models, reinforcement learning, MABs. This is an opportunity to come in on Day0 and influence the science roadmap of one of the most interesting problem spaces at Amazon - understanding the Amazon customer to build deeply personalized and adaptive shopping experiences. We will be working on applying state of the art science and research into production to elevate the customer experience. You will be part of a multidisciplinary team, working on one of the largest scale machine learning systems in the company. You will hone your skills in areas such as deep learning and reinforcement learning while building scalable industrial systems. As a member of a highly leveraged team of talented engineers and ML scientists, you will have a unique opportunity to help build infrastructure that accesses petabytes of data to produce and deliver models that deliver state of the art customer experiences. About the team Our mission is to delight every Amazon customer with a consistent and adaptive personalized shopping experience. We achieve our mission through investments in large scale machine learning, distributed systems and user experience with the purpose of delivering the future of shopping on Amazon. We are seeking an Applied Scientist to work on step function science improvements to help achieve SOTA results and to help build new Personalization experiences for Amazon customers.
  • US, CA, Santa Clara
    Job ID: 3139216
    (Updated 50 days ago)
    The AWS Neuron Science Team is looking for talented scientists to enhance our software stack, accelerating customer adoption of Trainium and Inferentia accelerators. In this role, you will work directly with external and internal customers to identify key adoption barriers and optimization opportunities. You'll collaborate closely with our engineering teams to implement innovative solutions and engage with academic and research communities to advance state-of-the-art ML systems. As part of a strategic growth area for AWS, you'll work alongside distinguished engineers and scientists in an exciting and impactful environment. We actively work on these areas: - AI for Systems: Developing and applying ML/RL approaches for kernel/code generation and optimization - Machine Learning Compiler: Creating advanced compiler techniques for ML workloads - System Robustness: Building tools for accuracy and reliability validation - Efficient Kernel Development: Designing high-performance kernels optimized for our ML accelerator architectures A day in the life AWS Utility Computing (UC) provides product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Additionally, this role may involve exposure to and experience with Amazon's growing suite of generative AI services and other cloud computing offerings across the AWS portfolio. About the team AWS Neuron is the software of Trainium and Inferentia, the AWS Machine Learning chips. Inferentia delivers best-in-class ML inference performance at the lowest cost in the cloud to our AWS customers. Trainium is designed to deliver the best-in-class ML training performance at the lowest training cost in the cloud, and it’s all being enabled by AWS Neuron. Neuron is a Software that include ML compiler and native integration into popular ML frameworks. Our products are being used at scale with external customers like Anthropic and Databricks as well as internal customers like Alexa, Amazon Bedrocks, Amazon Robotics, Amazon Ads, Amazon Rekognition and many more. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
  • US, WA, Seattle
    Job ID: 3139328
    (Updated 49 days ago)
    Application deadline: Applications will be accepted on an ongoing basis Amazon Ads is re-imagining advertising through cutting-edge generative artificial intelligence (AI) technologies. We combine human creativity with AI to transform every aspect of the advertising life cycle—from ad creation and optimization to performance analysis and customer insights. Our solutions help advertisers grow their brands while enabling millions of customers to discover and purchase products through delightful experiences. We deliver billions of ad impressions and millions of clicks daily, breaking fresh ground in product and technical innovations. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Why you’ll love this role: This role offers unprecedented breadth in ML applications and access to extensive computational resources and rich datasets that will enable you to build truly innovative solutions. You'll work on projects that span the full advertising life cycle, from sophisticated ranking algorithms and real-time bidding systems to creative optimization and measurement solutions. You'll work alongside talented engineers, scientists, and product leaders in a culture that encourages innovation, experimentation, and bias for action, and you’ll directly influence business strategy through your scientific expertise. What makes this role unique is the combination of scientific rigor with real-world impact. You’ll re-imagine advertising through the lens of advanced ML while solving problems that balance the needs of advertisers, customers, and Amazon's business objectives. Your impact and career growth: Amazon Ads is investing heavily in AI and ML capabilities, creating opportunities for scientists to innovate and make their marks. Your work will directly impact millions. Whether you see yourself growing as an individual contributor or moving into people management, there are clear paths for career progression. This role combines scientific leadership, organizational ability, technical strength, and business understanding. You'll have opportunities to lead technical initiatives, mentor other scientists, and collaborate with senior leadership to shape the future of advertising technology. Most importantly, you'll be part of a community that values scientific excellence and encourages you to push the boundaries of what's possible with AI. Watch two Applied Scientists at Amazon Ads talk about their work: https://www.youtube.com/watch?v=vvHsURsIPEA Learn more about Amazon Ads: https://advertising.amazon.com/ Key job responsibilities As a Senior Applied Scientist in Amazon Ads, you will: - Research and implement cutting-edge ML approaches, including applications of generative AI and large language models - Develop and deploy innovative ML solutions spanning multiple disciplines – from ranking and personalization to natural language processing, computer vision, recommender systems, and large language models - Drive end-to-end projects that tackle ambiguous problems at massive scale, often working with petabytes of data - Build and optimize models that balance multiple stakeholder needs - helping customers discover relevant products while enabling advertisers to achieve their goals efficiently - Build ML models, perform proof-of-concept, experiment, optimize, and deploy your models into production, working closely with cross-functional teams including engineers, product managers, and other scientists - Design and run A/B experiments to validate hypotheses, gather insights from large-scale data analysis, and measure business impact - Develop scalable, efficient processes for model development, validation, and deployment that optimize traffic monetization while maintaining customer experience
  • IN, HR, Gurugram
    Job ID: 3143914
    (Updated 42 days ago)
    We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 4+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
  • We are seeking an exceptional Sr. Manager, Applied Science - Global Selling Partner Risk Intelligence and Prevention, to lead the development and implementation of advanced AI solutions that will transform how we prevent bad actors from operating in our store and enable Selling Partners to start and grow their business without fear of disruption, so that customers and Selling Partners across the globe trust us and have confidence in the integrity of Amazon’s store. This role will focus on leveraging large language models and other generative AI technologies to enhance decision-making processes, automate complex risk assessment tasks, and improve operational efficiency in selling partner risk management. Key job responsibilities • Set up the vision, mission and a 3-year science plan for the selling partner risk management • Lead and manage a team of scientists, business intelligence engineers, business analysts, TPMs, to build foundational and domain-specific solutions that prevent bad actors from operating in our store • Identify and prioritize high-impact opportunities for AI-driven transformation to make Amazon the most trusted store for our customers and selling partners • Mentor and guide team members to achieve their career goals and objectives About the team Trust and Store Integrity Science is a new org established in 2024. We are missioned to leverage the fast evolving AI advancements to transform how we prevent bad actors in our stores, across science, engineering, product and program management, and operations.
  • US, WA, Redmond
    Job ID: 3142169
    (Updated 14 days ago)
    Amazon LEO is an initiative to increase global broadband access through a constellation of 3,236 satellites in low Earth orbit (LEO). Its mission is to bring fast, affordable broadband to unserved and underserved communities around the world. Amazon LEO will help close the digital divide by delivering fast, affordable broadband to a wide range of customers, including consumers, businesses, government agencies, and other organizations operating in places without reliable connectivity. We are seeking a Scientist to own analytics, scientistic research, validation, and development of our phased array systems across customer terminals and satellite-deployed terminals. In this role, you will transform raw test and telemetry data into actionable insights and automated checks that ensure every deployed system performs to expectations. You will build data and ML pipelines that detect calibration issues, quantify array performance, validate new algorithms, and increase the effectiveness, reproducibility, and automation of our antenna, calibration and deployment workflows. This role sits at the intersection of array processing, data science, and systems engineering, working closely with calibration/validation, phased array systems, RF communications, and test engineering teams. Key job responsibilities - Own metrics and data models that describe end-to-end calibration and system performance for customer terminals and satellite-deployed terminals, from factory test through field deployment. - Design and implement ML and statistical methods (e.g., anomaly detection, drift detection, predictive failure models, classification/regression) to identify mis-calibration, degraded performance, and emerging issues in large fleets of terminals and arrays. - Develop visualization and analytics tools (dashboards, reports, interactive notebooks) to help engineers quickly understand array performance, calibration residuals, and system margins across time, geography, and configurations. - Work with antenna, RF systems, and calibration engineers to define quantitative acceptance criteria for calibration and system validation, and encode those criteria into automated checks and workflows. - Design and run experiments and simulations that compare predicted vs. measured performance, closing the loop between link/array models and deployed hardware. - Build and maintain data pipelines that ingest lab data, chamber results, manufacturing test data, and in-field telemetry into secure, high-quality datasets suitable for analysis and ML training. - Prototype, test, and deploy machine learning and analytics applications in the cloud, partnering with software and systems teams to ensure solutions are scalable, maintainable, and integrated into existing tools and monitoring systems. - Provide clear, data-driven recommendations to improve calibration algorithms, test strategies, and system design; communicate findings to technical and non-technical stakeholders. - Mentor engineers and analysts in data best practices, experiment design, and interpretation of calibration and performance metrics. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life You will work with engineers to process large amounts of data and work through full designs to fully understand the Amazon Leo satellites and customer terminals from lab test benches to fully integrated customer terminals. Your tools and systems will prove out the performance of one of the most advanced communication systems ever built. You’ll collaborate with RF and systems engineers, see your models run using real hardware data, and make daily decisions that directly affect the readiness of Leo’s payload and customer terminal products. The data you analyze and scalable systems you build will enable critical data collection, system analysis, and calibration pipelines that ensure Leo hardware performs flawlessly on Earth and in orbit. About the team Our team owns the full performance lifecycle of Leo’s antenna systems from early concept testing and calibration to final product release. We operate at the intersection of RF hardware, software automation, and large-scale system integration. You’ll work closely with antenna, DSP, and system development engineers, contributing to test frameworks, manufacturing support, and performance validation. We leverage AWS tools and scalable software architectures to accelerate development, automate validation, and deliver reliable test systems used across the entire Leo organization. If you want to work on real hardware, influence product performance, and see your work scale to millions of users worldwide this is the place to do it
  • US, WA, Seattle
    Job ID: 3139836
    (Updated 4 days ago)
    Do you want to join a team of innovative scientists to research and develop generative AI technology that would disrupt the industry? Do you enjoy dealing with ambiguity and working on hard problems in a fast-paced environment? Amazon Connect is a highly disruptive cloud-based contact center from AWS that enables businesses to deliver intelligent, engaging, dynamic, and personalized customer service experiences. The Agentic Customer Experience organization is responsible for weaving native-AI across the Connect application experiences delivered to end-customers, agents, and managers/supervisors. The Interactive AI Science team, serves as the cornerstone for AI innovation across Amazon Connect, functioning as the sole science team support high impact product including Amazon Q in Connect, Contact Lens and other key initiatives. As an Sr. Applied Scientist on our team, you will work closely with senior technical and business leaders from within the team and across AWS. You distill insight from huge data sets, conduct cutting edge research, foster ML models from conception to deployment. You have deep expertise in machine learning and deep learning broadly, and extensive domain knowledge in natural language processing, LLMs and Agentic AI, etc. You are comfortable with quickly prototyping and iterating your ideas to build robust ML models using technology such as PyTorch, Tensorflow and AWS Sagemaker. The ideal candidate has the ability to understand, implement, innovate on the state-of-the-art Agentic AI based systems. We have a rapidly growing customer base and an exciting charter in front of us that includes solving highly complex engineering and scientific problems. We are looking for passionate, talented, and experienced people to join us to innovate on modern contact centers in the cloud. The position represents a rare opportunity to be a part of a fast-growing business soon after launch, and help shape the technology and product as we grow. You will be playing a crucial role in developing the next generation contact center, and get the opportunity to design and deliver scalable, resilient systems while maintaining a constant customer focus. Learn more about Amazon Connect here: https://aws.amazon.com/connect/ About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.