careers-lead-image

Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds across diverse fields including artificial intelligence, robotics, computer vision, economics, and sustainability. Join us in pioneering solutions to complex challenges that not only delight our customers but also help define the future of technology.
  • The program is designed for academics from universities around the globe who want to work on large-scale technical challenges while continuing to teach and conduct research at their universities.
  • The program offers recent PhD graduates an opportunity to advance research while working alongside experienced scientists with backgrounds in industry and academia.
  • Our internship roles span research areas to provide hands-on experience working alongside world-class scientists and engineers to advance the state of the art in your field.
439 results found
  • (Updated 57 days ago)
    The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team Agentic AI drives innovation at the forefront of artificial intelligence, enabling customers to transform their businesses through cutting-edge AI solutions. We build and deliver the foundational AI services that power the future of cloud computing, helping organizations harness the potential of AI to solve their most complex challenges. Join our dynamic team of AI/ML practitioners, applied scientists, software engineers, and solution architects who work backwards from customer needs to create groundbreaking technologies. If you're passionate about shaping the future of AI while making a meaningful impact for customers worldwide, we want to hear from you. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a U.S export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
  • (Updated 51 days ago)
    Amazon Health Services (One Medical) About Us: At Health AI, we're revolutionizing healthcare delivery through innovative AI-enabled solutions. As part of Amazon Health Services and One Medical, we're on a mission to make quality healthcare more accessible while improving patient outcomes. Our work directly impacts millions of lives by empowering patients and enabling healthcare providers to deliver more meaningful care. Role Overview: We're seeking an Applied Scientist to join our dynamic team in building state of the art AI/ML solutions for healthcare. This role offers a unique opportunity to work at the intersection of artificial intelligence and healthcare, developing solutions that will shape the future of medical services delivery. Key job responsibilities - Lead end-to-end development of AI/ML solutions for Amazon Health organization, including Amazon Pharmacy and One Medical - Research, design, and implement state-of-the-art machine learning models, with a focus on Large Language Models (LLMs) and Visual Language Models (VLMs) - Optimize and fine-tune models for production deployment, including model distillation for improved latency - Drive scientific innovation while maintaining a strong focus on practical business outcomes - Collaborate with cross-functional teams to translate complex technical solutions into tangible customer benefits - Contribute to the broader Amazon Health scientific community and help shape our technical roadmap
  • We are seeking an exceptional Senior Applied Scientist specializing in ML Systems, training, and inference optimization to join DS3. This role requires deep expertise in performance engineering, kernel development, distributed systems optimization, and AI workload optimization across heterogeneous compute platforms. You will invent and implement novel optimization techniques that directly impact the performance and cost-efficiency of ML training and inference for AWS customers worldwide. As a Senior Applied Scientist in DS3, you will work at the lowest levels of the software stack—writing custom CUDA kernels, optimizing PTX assembly, developing high-performance operators for GPUs and AWS Neuron, designing efficient communication patterns for multi-GPU and multi-node training, and inventing new algorithmic approaches to accelerate transformer models and emerging architectures. Your work will span from single-node inference optimization to large-scale distributed training systems, influencing the design of AWS training and inference services and setting new standards for ML systems performance across the industry. Deep Science for Systems and Services (DS3) is a part of AWS Utility Computing (UC) which provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Key job responsibilities Systems-Level Scientific Innovation: Design and implement novel kernel-level optimizations for ML inference and training workloads, including custom CUDA kernels, PTX-level optimizations, and cross-platform acceleration for CUDA and AWS Neuron SDK. Performance Engineering Leadership: Drive 2-10× performance improvements in latency, throughput, and memory efficiency for production ML inference & training systems through systematic profiling, analysis, and optimization. Cross-Platform Optimization: Develop and port high-performance ML operators across GPUs, AWS Inferentia/Trainium, and emerging AI accelerators, ensuring optimal performance on each platform. Product-Level Impact: Lead the design, implementation, and delivery of scientifically-complex optimization solutions that directly improve customer experience and reduce AWS operational costs at scale. Scientific Rigor: Produce technical documentation and internal research reports demonstrating the correctness, efficiency, and scalability of your optimizations. Contribute to external publications when aligned with business needs. Technical Leadership: Influence your team's technical direction and scientific roadmap. Build consensus across engineering and science teams on optimization strategies and architectural decisions. Mentorship & Knowledge Sharing: Actively mentor junior scientists and engineers on performance engineering best practices, kernel development, and systems-level optimization techniques. About the team Deep Science for Systems and Services (DS3) is a science organization within AWS Compute & ML Services focused on advancing AI/ML technologies at the systems level. Our team works at the intersection of machine learning and high-performance computing, developing optimizations for large model inference across diverse hardware platforms. We push the boundaries of what's possible in ML inference performance, working directly with CUDA, AWS Neuron, and other low-level compute abstractions to deliver industry-leading latency, throughput, and cost-performance for AWS customers deploying AI at scale. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
  • US, MA, Boston
    Job ID: 3123268
    (Updated 76 days ago)
    The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
  • (Updated 1 days ago)
    About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Amazon Brand Store team (such as www.amazon.com/lego) within Sponsored Products and Brands is a core product offering in the Amazon Advertising portfolio. The brand’s store are their dedicated place on Amazon to differentiate, grow sales, and build loyalty with millions of shoppers. Our mission is to empower brands of all sizes to tell their story in their own unique voice to consumers. We help brands create engaging shopping experiences that assist shoppers in discovering and evaluating them as part of their purchase decisions. We succeed when we are both useful to shoppers and when brands can attract and retain shopper’s attention using our products. A cool case study on brand stores can be found here: https://advertising.amazon.com/library/case-studies/nespresso-brand-store-increases-shopper-engagement. We are looking for a Senior Applied Scientist to lead the generation of data-driven insights that bring long-term value to brands, as well as the ideation and creation of personalized shopping experiences for brand stores through industry-leading generative AI technologies. In this role, you will influence our team's science and business strategy with your expertise and deep business understanding. You will be expected to identify and solve ambiguous problems and science deficiencies, and to provide informed solutions based on state-of-the-art machine learning research. Impact and Career Growth You will invent new experiences and influence customer-facing shopping experiences to help brands grow their retail businesses. This is your opportunity to work within the fastest-growing businesses across all of Amazon! You'll define a long-term science vision for AI-driven brand shopping experiences, working backwards from our customers' needs and translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship.
  • (Updated 0 days ago)
    The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Key job responsibilities - Develop multimodal Large Language Models (LLMs) to observe, model and derive insights from manual workflows for automation - Work in a joint scrum with engineers for rapid invention, develop automation agent systems, and take them to launch for millions of customers - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
  • (Updated 79 days ago)
    The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports
  • (Updated 38 days ago)
    The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
  • (Updated 15 days ago)
    Are you fascinated by the power of Large Language Models (LLM) and applying Generative AI to solve complex challenges within one of Amazon's most significant businesses? Amazon Selection and Catalog Systems (ASCS) builds the systems that host and run the world's largest e-Commerce products catalog, it powers the online buying experience for customers worldwide so they can find, discover and buy anything they want. Amazon's customers rely on the completeness, consistency and correctness of Amazon's product data to make well-informed purchase decisions. We develop LLM applications that make Catalog the best-in-class source of product information for all products worldwide. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries) and multitude of input sources (millions of sellers contributing product data with different quality). We are seeking a passionate, talented, and inventive individual to join the Catalog AI team and help build industry-leading technologies that customers will love. You will apply machine learning and large language model techniques, such as fine-tuning, reinforcement learning, and prompt optimization, to solve real customer problems. You will work closely with scientists and engineers to experiment with new methods, run large-scale evaluations, and bring research ideas into production. Key job responsibilities * Design and implement LLM-based solutions to improve catalog data quality and completeness * Conduct experiments and A/B tests to validate model improvements and measure business impact * Optimize large language models for quality and cost on catalog-specific tasks * Collaborate with engineering teams to deploy models at scale serving billions of products
  • US, WA, Bellevue
    Job ID: 3123457
    (Updated 1 days ago)
    The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in deep learning, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, the Applied Scientist will collaborate closely with talented colleagues to lead the development of advanced approaches and modeling techniques, driving forward the frontier of LLM technology. This includes innovating model-in-the-loop and human-in-the-loop approaches to ensure the collection of high-quality data, safeguarding data privacy and security for LLM training, and more. The Applied Scientist will also have a direct impact on enhancing customer experiences through state-of-the-art products and services. A day in the life The Applied Scientist with the AGI team will support the science solution design, run experiments, research new algorithms, and find new ways of optimizing the customer experience; while setting examples for the team on good science practice and standards. Besides theoretical analysis and innovation, an Applied Scientist will also work closely with talented engineers and scientists to put algorithms and models into practice. The ideal candidate should be passionate about delivering experiences that delight customers and creating robust solutions. They will also create reliable, scalable and high-performance products that require exceptional technical expertise, and a sound understanding of Machine Learning.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.