Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds in artificial intelligence and related fields.
962 results found
  • US, CA, San Diego
    Job ID: 2791087
    (Updated 25 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
  • US, CA, San Diego
    Job ID: 2791092
    (Updated 57 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
  • US, WA, Seattle
    Job ID: 2791095
    (Updated 57 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
  • US, WA, Seattle
    Job ID: 2791096
    (Updated 57 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
  • IN, KA, Bengaluru
    Job ID: 2791659
    (Updated 57 days ago)
    The Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our Search Relevance team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide. Amazon has grown rapidly and will continue to do so in foreseeable future. Providing a high quality search experience is a unique challenge as Amazon expands to new customers, countries, categories, and product lines. We are seeking a strong applied scientists to join the newly formed Relevance India team. This team’s charter is to increase the pace at which Amazon expands and improve the search experience at launch. In practice, we aim to invent universally applicable signals and algorithms for training machine-learned ranking models and improve the machine-learning framework for training and offline evaluation that is used for all new relevance models. Key job responsibilities * Build machine learning models for Product Search. * Develop new ranking features and techniques building upon the latest results from the academic research community. * Propose and validate hypothesis to direct our business and product road map. Work with engineers to make low latency model predictions and scale the throughput of the system. * Focus on identifying and solving customer problems with simple and elegant solutions. * Design, develop, and implement production level code that serves billions of search requests. Own the full development cycle: design, development, impact assessment, A/B testing (including interpretation of results) and production deployment. * Collaborate with other engineers and related teams within A9.com and Amazon.com to find technical solutions to complex design problems. * Take ownership. Understand the needs of various search teams, distill those into coherent projects, and implement them with an eye on long-term impact. * Be a leader. Use your expertise to set a high bar for the team, mentor team members, set the tone for how to take on and deliver on large impossible-sounding projects. * Be ambitious. Find and eagerly tackle hard problems. * Be curious. You will work alongside systems engineers, machine learning scientists, and data analysts. Your effectiveness and impact will depend on discussing problems with and learning from them. You will have access to the cutting-edge technologies and vast technical tools and resources of Amazon and will need to learn how to use them effectively. * Be customer focused. Work backwards from customer problems, figure out elegant solutions, and implement them for speed and scalability.
  • US, WA, Seattle
    Job ID: 2791097
    (Updated 57 days ago)
    Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
  • US, WA, Bellevue
    Job ID: 2790563
    (Updated 4 days ago)
    AWS Support is looking for a high caliber Applied Scientist to build AI/GenAI experiences and foundations for Kumo Intelligent Tooling — the organization that owns products and services used by 10,000+ AWS Support staff to help 40,000+ unique monthly AWS customers, and is responsible for AWS Support’s strategic initiative to transform its business and delivery model through GenAI. We are looking for a Principal Scientist to join us and spearhead the AI revolution through intelligent solutions that assist customers and Support staff to troubleshoot and resolve technical issues. You are a hands-on contributor and will apply your knowledge to propose solutions, create software prototypes, and productize prototypes into production systems using modern software development tools and methodologies. In addition, you will support and scale your solutions to meet ever-growing customer needs use cases. You have strong verbal and written communication skills, are self-driven and deliver high quality results in a fast-paced environment. You will play a pivotal role in shaping the definition, vision, design, roadmap and development of solutions from beginning to end for hard, previously unsolved problems. Key job responsibilities - Lead and conduct advanced research in Large Language Models (LLMs), GenAI, and Deep Learning, with a focus on developing novel algorithms, architectures, and methodologies for technical support. - Stay up-to-date with the latest advancements in AI, LLMs, and GenAI, and identify opportunities to leverage cutting-edge technologies to deliver new Support offerings and capabilities to AWS customers. - Lead by example, demonstrating technical excellence that other scientists aspire to follow, fostering a culture of innovation and knowledge sharing, and taking time to mentor and develop team members - Collaborate with cross-functional teams, including scientists, engineers, and product managers, to translate research findings into practical applications. - Partner across AWS AI/GenAI service teams to influence and drive investment prioritization and product direction. - Evangelize our AI/GenAI innovations, results, and impact to customers, partners, and AWS senior leaders. About the team Kumo is the global product and engineering organization for AWS Support, a multi-billion $ business. Our mission is to empower innovators to get the most out of cloud services. We build technology that reimagines how people and automation combine to solve problems, remove risks, build with excellence, and drive business impact. We own critical cloud services used by all AWS customers to build, optimize, and operate at scale, including AWS Health, Trusted Advisor, Well-Architected, re:Post, Support Center, and AWS Managed Services. We also own services that enable AWS support teams to provide mission-critical, customer-obsessed support to our customers, including Command Center (the console platform for 14,000 frontline staff and technical account managers), Kumo Case Management (the contact center platform for technical support), Tool Contribution (the platform for support staff to build and reuse troubleshooting tools), and Business Case Authorization (the service for controlling access to customer metadata based on business justifications). AWS Kumo is a dynamic, agile, and collaborative team of individuals with diverse backgrounds, located around the globe with larger teams in the U.S., Canada, and South Africa.
  • ES, B, Barcelona
    Job ID: 2802449
    (Updated 20 days ago)
    The Community Feedback organization powers customer-generated features and insights that help customers use the wisdom of the community to make unregretted shopping decisions. Today our features include Customer Reviews, Content Moderation, and Customer Q&A (Ask), however our mission and charter are broader than these features. We are focused on building a rewarding and engaging experience for contributors to share their feedback, and providing shoppers with trusted insights based on this feedback to inform their shopping decision The Community Data & Science team is looking for a passionate, talented, and inventive Senior Applied Scientist with a background in AI, Gen AI, Machine Learning, and NLP to help build LLM solutions for Community Feedback. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team and are ready to make a lasting impact on the future of AI-powered shopping, we invite you to join us on this exciting journey to reshape shopping. Please visit https://www.amazon.science for more information. Key job responsibilities - As a Senior Applied Scientist, you will work on state-of-the-art technologies that will result in published papers. - However, you will not only theorize about the algorithms but also have the opportunity to implement them and see how they perform in the field. - Our team works on a variety of projects, including state-of-the-art generative AI, LLM fine-tuning, alignment, prompt engineering, and benchmarking solutions. - You will be also mentoring junior scientists on the team. About the team The Community Data & Science team focusses on analyzing, understanding, structuring and presenting customer-generated content (in the form of ratings, text, images and videos) to help customers use the wisdom of the community to make unregretted purchase decisions. We build and own ML models that help with i) shaping the community content corpus both in terms of quantity and quality, ii) extracting insights from the content and iii) presenting the content and insights to shoppers to eventually influence purchase decisions. Today, our ML models support experiences like content solicitation, submission, moderation, ranking, and summarization.
  • IN, KA, Bangalore
    Job ID: 2778125
    (Updated 69 days ago)
    Are you excited about delighting millions of customers by driving the most relevant marketing initiatives? Do you thrive in a fast-moving, large-scale environment that values data-driven decision making and sound scientific practices? Amazon is seeking a Data Scientist . This team is focused on driving key priorities of a)core shopping that elevates the shopping CX for all shoppers in all lifecycle stages, b) developing ways to accelerate lifecycle progression and build foundational capabilities to address the shopper needs and c)Alternate shopping models We are looking for a Data Scientist to join our efforts to support the next generation of analytics systems for measuring consumer behavior using machine learning and econometrics at big data scale at Amazon. You will work machine learning and statistical algorithms across multiple platforms to harness enormous volumes of online data at scale to define customer facing products and measure customer responses to various marketing initiatives. The Data Scientist will be a technical player in a team working to build custom science solutions to drive new customers, engage existing customers and drive marketing efficiencies by leveraging approaches that optimize Amazon’s systems using cutting edge quantitative techniques. The right candidate needs to be fluid in: · Data warehousing and EMR (Hive, Pig, R, Python). · Feature extraction, feature engineering and feature selection. · Machine learning, causal inference, statistical algorithms and recommenders. · Model evaluation, validation and deployment. · Experimental design and testing.
  • (Updated 6 days ago)
    Amazon Advertising is one of Amazon's fastest growing and most profitable businesses. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. The Search Ranking and Interleaving (R&I) team within the Marketplace Intelligence org in SP is responsible for determining which ads to show in Amazon search, where to place them, how many ads to place, and to which customers. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of machine learning, causal inference, and optimization techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on customer obsession and inventing and simplifying. Our primary focus is on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. We are looking for an Applied Scientist to join the Search Ranking team in MI. The team is responsible for improving the quality of ads shown to users (e.g., relevance, personalized and contextualized ranking to improve shopper experience and business metrics) via online experimentation, ML modeling, simulation, and online feedback. As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Tackle and solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches. - Recruit Scientists to the team and provide mentorship.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.