careers-lead-image

Careers

At Amazon, we believe that scientific innovation is essential to being the most customer-centric company in the world. Our scientists' ability to have an impact at scale allows us to attract some of the brightest minds across diverse fields including artificial intelligence, robotics, computer vision, economics, and sustainability. Join us in pioneering solutions to complex challenges that not only delight our customers but also help define the future of technology.
  • The program is designed for academics from universities around the globe who want to work on large-scale technical challenges while continuing to teach and conduct research at their universities.
  • The program offers recent PhD graduates an opportunity to advance research while working alongside experienced scientists with backgrounds in industry and academia.
  • Our internship roles span research areas to provide hands-on experience working alongside world-class scientists and engineers to advance the state of the art in your field.
530 results found
  • IN, KA, Bengaluru
    Job ID: 3182604
    (Updated 2 days ago)
    RBS (Retail Business Services) Tech team works towards enhancing the customer experience (CX) and their trust in product data by providing technologies to find and fix Amazon CX defects at scale. Our platforms help in improving the CX in all phases of customer journey, including selection, discoverability & fulfilment, buying experience and post-buying experience (product quality and customer returns). As a Sciences team in RBS Tech, we focus on foundational ML research and develop scalable state-of-the-art ML solutions to solve the problems covering customer experience (CX) and Selling partner experience (SPX). We work to solve problems related to multi-modal understanding (text and visual), supervised and unsupervised techniques, multi-task learning, multi-label classification, aspect and topic extraction for Customer Anecdote Mining, product similarity, using GenAI, LLMs, NLP and Computer Vision. Key job responsibilities As an Applied Science Manager, you will be responsible to design and deploy scalable GenAI, NLP and Computer Vision solutions that will impact the content visible to millions of customer and solve key customer experience issues. You will Lead scientists on the team and oversee research and development projects at various stages ranging from initial exploration to deployment into production systems. You will partner with business and engineering teams to identify and solve large and significantly complex problems that require scientific innovation. You will help the team leverage your expertise, by coaching and mentoring. You will contribute to the professional development of colleagues, improving their technical knowledge and the engineering practices. You will create the environment in the team to file for patents and/or publish research work where opportunities arise. You will impact the large product strategy, identifies new business opportunities and provides strategic direction to the team.
  • US, NY, New York
    Job ID: 3184564
    (Updated 1 days ago)
    As part of the AWS Applied AI Solutions organization, we have a mission to build delightful AI solutions that improve human capabilities and business outcomes. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated AI solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Applied Scientist will contribute to the development of Agentic AI solutions leveraging Gen AI. The role requires extending existing scientific techniques and inventing new ones to address specific customer needs. You should be comfortable working semi-autonomously on difficult problems with visible risks or roadblocks. You'll work closely with technical leaders within the team. We're looking for scientists who can maintain high standards while moving quickly, prioritizing both rapid experimentation and responsible AI development to deliver measurable customer impact. Key job responsibilities * Design and implement solutions that extend or adapt scientific approaches for customer needs * Deliver components into production that meet high quality standards (efficient, reproducible, testable code) * Produce science outputs demonstrating correctness, scholarship, and scientific rigor * Work with product, engineering, and science teams to deliver impactful AI features * Contribute to operational excellence in the team's deliverables About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use.
  • US, WA, Seattle
    Job ID: 3185406
    (Updated 0 days ago)
    This role will contribute to developing the Economics and Science products and services in the Fee domain, with specialization in supply chain systems and fees. Through the lens of economics, you will develop causal links for how Amazon, Sellers and Customers interact. You will be a key and senior scientist, advising Amazon leaders how to price our services. You will work on developing frameworks and scalable, repeatable models supporting optimal pricing and policy in the two-sided marketplace that is central to Amazon's business. The pricing for Amazon services is complex. You will partner with science and technology teams across Amazon including Advertising, Supply Chain, Operations, Prime, Consumer Pricing, and Finance. We are looking for an experienced Economist to improve our understanding of seller Economics, enhance our ability to estimate the causal impact of fees, and work with partner teams to design pricing policy changes. In this role, you will provide guidance to scientists to develop econometric models to influence our fee pricing worldwide. You will lead the development of causal models to help isolate the impact of fee and policy changes from other business actions, using experiments when possible, or observational data when not. Key job responsibilities The ideal candidate will have extensive Economics knowledge, demonstrated strength in practical and policy relevant structural econometrics, strong collaboration skills, proven ability to lead highly ambiguous and large projects, and a drive to deliver results. They will work closely with Economists, Data / Applied Scientists, Strategy Analysts, Data Engineers, and Product leads to integrate economic insights into policy and systems production. Familiarity with systems and services that constitute seller supply chains is a plus but not required. About the team The Stores Economics and Sciences team is a central science team that supports Amazon's Retail and Supply Chain leadership. We tackle some of Amazon's most challenging economics and machine learning problems, where our mandate is to impact the business on massive scale.
  • (Updated 9 days ago)
    As a Principal Applied Scientist for Last Hundred Yards Automation, you will be at the forefront of developing AI and ML solutions that power our autonomous delivery robots. This role combines deep expertise in machine learning, computer vision, and robotics to solve complex challenges in real-world autonomous navigation, obstacle detection, and dynamic path planning. You will work closely with robotics engineers, software developers, and product teams to research, design, and implement sophisticated algorithms that enable safe and efficient last-yard delivery operations. This position requires a unique blend of theoretical knowledge and practical implementation skills, with a focus on transforming research concepts into production-ready solutions that can operate reliably in diverse real-world environments. Key job responsibilities The Principal Applied Scientist will lead the development and implementation of advanced AI/ML models for autonomous navigation, focusing on critical areas such as real-time object detection, semantic scene understanding, and predictive movement planning. You will be responsible for designing and conducting experiments, analyzing complex datasets, and developing novel algorithms to improve robot performance and reliability. The role involves collaborating with cross-functional teams to integrate ML solutions into the robotics platform, optimizing model performance for edge computing, and establishing metrics for continuous improvement. You will also mentor junior scientists, contribute to research publications, and stay current with latest developments in the field. Key activities include developing robust ML pipelines, implementing state-of-the-art deep learning architectures, and creating innovative solutions for challenging problems such as adverse weather navigation, multi-robot coordination, and human-robot interaction. Success in this role requires balancing research excellence with practical implementation, while maintaining a strong focus on safety and reliability in autonomous systems. About the team LMDA (Last Mile Delivery Automation) is a automation system designed to revolutionize the final phase of package delivery, focusing specifically on the last hundred yards from delivery vehicle to customer doorstep. The system integrates autonomous robots equipped with advanced AI/ML algorithms, real-time navigation capabilities, and smart obstacle avoidance technology to efficiently transport packages to their final destination. These robots are designed to navigate various terrains, including sidewalks, building entrances, and residential complexes, while adhering to local safety regulations and maintaining secure delivery protocols. LMDA incorporates cloud-based fleet management, real-time tracking, and dynamic route optimization to ensure seamless coordination between delivery vehicles and robots. The system features a user-friendly interface for both delivery personnel and customers, providing live tracking, delivery notifications, and interactive robot communication. As labor costs rise and delivery volumes increase, LMDA represents a scalable, cost-effective solution that addresses the growing challenges of last-mile delivery while significantly improving operational efficiency and customer satisfaction.
  • US, WA, Bellevue
    Job ID: 3180339
    (Updated 7 days ago)
    Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Applied Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and artificial intelligence techniques to improve on marketplace optimization solutions. The Middle Mile Science group is charged with developing an evolving suite of optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. The scale of Amazon’s fulfillment operations challenges us to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. Real-time execution of our network depends on state-of-the-art artificial intelligence tools to coordinate the actions of thousands of operators and drivers in real time. Amazon often finds existing techniques do not effectively match our unique business needs, which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As a Sr. Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio. About the team Our Middle Mile Marketplace Science team builds the algorithms for Amazon’s rapidly growing freight marketplace. Amazon contracts with 3P shippers and a network of independent carriers, using a mix of contract structures with varying service and risk profiles. Our work focuses on mechanisms and learning algorithms to optimize pricing and matching in this complex marketplace, and continually improve the experience for carriers and shippers. This is an area with many challenging problems and a huge business impact for Amazon!
  • (Updated 11 days ago)
    Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
  • (Updated 10 days ago)
    At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
  • US, WA, Seattle
    Job ID: 3180745
    (Updated 6 days ago)
    We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to apply their causal inference skillsets to solve real world problems. The intern will work in the area of Amazon Pharmacy. Our PhD Economist Internship Program offers hands-on experience in applied economics, supported by mentorship, structured feedback, and professional development. Interns work on real business and research problems, building skills that prepare them for full-time economist roles at Amazon and beyond. You will learn how to build data sets and perform applied econometric analysis collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis.
  • US, CA, San Francisco
    Job ID: 3175923
    (Updated 13 days ago)
    Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
  • (Updated 9 days ago)
    Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. We are seeking a talented Applied Scientist to join our advanced robotics team, focusing on developing and applying cutting-edge simulation methodologies for advanced robotics systems. This role centers on research and development of physics-based simulation techniques, sim-to-real transfer methods, and machine learning approaches that enable rapid development, testing, and validation of robotic systems operating in complex, real-world environments. Key job responsibilities - Advance physics-based simulation fidelity for contact-rich manipulation and locomotion - Design and build high-performance simulation tools integrated into a production robotics stack - Translate research ideas into robust, scalable software pipelines - Develop methods to quantify and reduce simulation-to-reality gaps across design, safety, and control - Architect scalable simulation solutions for rigid and deformable body dynamics - Build simulation pipelines optimized for large-scale reinforcement and policy learning - Establish frameworks for continuous simulation improvement using real-world deployment data - Collaborate with engineering, science, and safety teams on simulation requirements and validation About the team Our team is building a comprehensive simulation platform for advanced robotics development, combining locomotion and manipulation capabilities. We operate at the cutting edge of physics simulation, reinforcement learning, and sim-to-real transfer, collaborating with world-class robotics engineers, applied scientists, and mechanical designers in a fast-paced, innovation-driven environment. This role uniquely combines fundamental research with real-world deployment. You will pursue core research questions in physics-based simulation while seeing your work translated into production systems, validated on real hardware, and informed by deployment data. Working alongside Simulation Software Engineers, you will help transform research ideas into scalable, production-grade simulation capabilities that directly impact how robots are designed, trained, and deployed.

Science at Amazon around the world

Amazon scientists are working on large-scale technical challenges in a variety of research areas across the globe. Use the pins below to learn more about the customer-obsessed science being conducted at some of our research locations.
world map in greyscale
Australia
South Australia, AU
City
New South Wales, AU
City
Canada
British Columbia
City
Ontario
City
China
Shanghai, CN
City
Beijing, CN
City
Germany
City City City
India
Hyderabad, IN
City
Bengaluru, IN
City
Israel
Luxembourg
City
United Kingdom
United States
California (Southern)
California (Northern)
San Francisco
Massachusetts
New York
Pennsylvania
City
Texas
City
Virginia
Washington
download (18).jpeg

Academia

Amazon collaborates with leading academic organizations to drive innovation and to ensure that research is creating solutions whose benefits are shared broadly across all sectors of society.