Knowledge graphs have emerged as a key abstraction for organizing information in diverse domains and their embeddings are increasingly used to harness their information in various information retrieval and machine learning tasks. However, the ever growing size of knowledge graphs requires computationally efficient algorithms capable of scaling to graphs with millions of nodes and billions of edges. This paper presents DGL-KE, an open-source package to efficiently compute knowledge graph embeddings. DGLKE introduces various novel optimizations that accelerate training on knowledge graphs with millions of nodes and billions of edges using multi-processing, multi-GPU, and distributed parallelism. These optimizations are designed to increase data locality, reduce communication overhead, overlap computations with memory accesses, and achieve high operation efficiency. Experiments on knowledge graphs consisting of over 86M nodes and 338M edges show that DGL-KE can compute embeddings in 100 minutes on a EC2 instance with 8 GPUs and 30 minutes on an EC2 cluster with 4 machines with 48 cores/machine. These results represent a 2× ∼ 5× speedup over the best competing approaches.

Related content

See more See more
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside aRead more