Line art of silicon chips developed by Annapurna Labs since its acquisition by Amazon in 2015.  Line art includes mentions of Graviton, Inferentia, and Trainium chips, along with AWS Nitro system.
Amazon's acquisition of Annapurna Labs in 2015 has led to, among other advancements, the development of five generations of the AWS Nitro system, three generations of Arm-based Graviton processors, as well as AWS Trainium and AWS Inferentia chips that are optimized for machine learning training and inference. These chips and systems were discussed at the AWS Silicon Innovation Day event on August 3. The event included a talk by Nafea Bshara, AWS vice president and distinguished engineer, on silicon innovation emerging from Annapurna Labs.

How silicon innovation became the ‘secret sauce’ behind AWS’s success

Nafea Bshara, AWS vice president and distinguished engineer, discusses Annapurna Lab’s path to silicon success; Annapurna co-founder was a featured speaker at AWS Silicon Innovation Day virtual event.

Nafea Bshara, Amazon Web Services vice president and distinguished engineer, and the co-founder of Annapurna Labs, an Israeli-based chipmaker that Amazon acquired in 2015, maintains a low profile, as does his friend and Annapurna co-founder, Hrvoye (Billy) Bilic.

Nafea Bshara headshot image
Nafea Bshara, AWS vice president and distinguished engineer.

Each executive’s LinkedIn profile is sparse, in fact, Bilic’s is out of date.

“We hardly do any interviews; our philosophy is to let our products do the talking,” explains Bshara.

Those products, and silicon innovations, have done a lot of talking since 2015, as the acquisition has led to, among other advancements, the development of five generations of the AWS Nitro System, three generations (1, 2, 3) of custom-designed, Arm-based Graviton processors that support data-intensive workloads, as well as AWS Trainium, and AWS Inferentia chips optimized for machine learning training and inference.

Some observers have described the silicon that emerges from Annapurna Labs in the U.S. and Israel as AWS’s “secret sauce”.

Nafea’s silicon journey began at Technion University in Israel, where he earned bachelor’s and master’s degrees in computer engineering, and where he first met Hrvoye. The two then went on to work for Israel-based Galileo, a company that made chips for networking switches, and controllers for networking routers. Galileo was acquired by U.S. semiconductor manufacturer Marvell in 2000, where Bshara and Bilic would work for a decade before deciding to venture out on their own.

“We had developed at least 50 different chips together,” Bshara explained, “so we had a track record and a first-hand understanding of customer needs, and the market dynamics. We could see that some market segments were being underserved, and with the support from our spouses, Lana and Liat, and our funding friends Avigdor [Willenz] and Manuel [Alba], we started Annapurna Labs.”

That was mid-2011, and three and half years later Amazon acquired the company. The two friends have continued their journey at Amazon, where their team’s work has spoken for itself.

Last year, industry analyst David Vellante praised AWS’s “revolution in system architecture.”

“Much in the same way that AWS defined the cloud operating model last decade, we believe it is once again leading in future systems. The secret sauce underpinning these innovations is specialized designs… We believe these moves position AWS to accommodate a diversity of workloads that span cloud, data center as well as the near and far edge.”

Annapurna’s work was highlighted during the AWS Silicon Innovation Day virtual event on August 3. In fact, Nafea was a featured speaker in the event. The Silicon Innovation Day broadcast, which highlighted AWS silicon innovations, included a keynote from David Brown, vice president, Amazon EC2; a talk about the history of AWS silicon innovation from James Hamilton, Amazon senior vice president and distinguished engineer who holds more than 200 patents in 22 countries in server and datacenter infrastructure, database, and cloud computing; and a fireside chat on the Nitro System with Anthony Liguori, AWS vice president and distinguished engineer, and Jeff Barr, AWS vice president and chief evangelist.

In advance of the silicon-innovation event, Amazon Science connected with Bshara to discuss the history of Annapurna, how the company and the industry have evolved in the past decade, and what the future portends.

  1. Q. 

    You co-founded Annapurna Labs just over 11 years ago. Why Annapurna?

    A. 

     I co-founded the company with my longtime partner, Billy, and with an amazing set of engineers and leaders who believed in the mission. We started Annapurna Labs because we looked at the way the chip industry was investing in infrastructure and data centers; it was minuscule at that time because everybody was going after the gold rush of mobile phones, smartphones, and tablets.

    We believed the industry was over indexing on investment for mobile, and under investing in the data center. The data center market was underserved. That, combined with the fact that there was increasing disappointment with the ineffective and non-productive method of developing chips, especially when compared with software development. The productivity of software developers had improved significantly in the past 25 years, while the productivity of chip developers hadn’t improved much since the ‘90s. In assessing the opportunity, we saw a data-center market that was being underserved, and an opportunity to redefine chip development with greater productivity, and with a better business model. Those factors contributed to us starting Annapurna Labs.

  2. Q. 

    How has the chip industry evolved in the past 11 years?

    A. 

    The chip industry realized, a bit late, but nevertheless realized that productivity and time to market needed to be addressed. While Annapurna has been a pioneer in advancing productivity and time to market, many others are following in our footsteps and transitioning to a building-blocks-centric development mindset, similar to how the software industry moved toward object-oriented, and service-oriented software design.

    Chip companies have now transitioned to what we refer to as an intellectual property-oriented, or IP-oriented, correct-by-design approach. Secondly, the chip industry has adopted the cloud. Cloud adoption has led to an explosion of compute power for building chips. Using the cloud, we are able to use compute in a ‘bursty’ way and in parallel. We and our chip-industry colleagues couldn’t deliver the silicon we do today without the cloud. This has led to the creation of a healthy market where chip companies have realized they don’t need to build everything in house, in much the same way software companies have realized they can buy libraries from open source or other library providers. The industry has matured to the point where now there is a healthy business model around buying building blocks, or IPs, from providers like Arm, Synopsys, Alphawave, or Cadence.

  3. Q. 

    Annapurna Labs was named after one of the tallest peaks in the Himalayas that’s regarded as one of the most dangerous mountains to climb. What's been the tallest peak you've had to climb?

    A. 

    I’m up in the cloud, I don’t need to climb anything [laughing]. Yes, Billy and I picked the name Annapurna Labs for a couple of reasons. First, Billy and I originally planned to climb Annapurna before we started the company. But then we got excited about the idea, acquired funding, and suddenly time was of the essence, so we put our climbing plans on hold and started the company. We called it Annapurna because at that time – and it’s true even today – there is a high barrier to entry in starting a chip company. The challenge is steep, and the risk is high, so it’s just like climbing Annapurna. We also believed that we wanted to reach a point above the clouds where you could see things very clearly, and without clutter. That’s always been a mantra for us as a company: Avoid the clutter, and look far into the future to understand what the customer really needs versus getting distracted by the day-to-day noise.

  4. Q. 

    What are the unique challenges you face in designing chips for ML training and inference versus more general CPU designs?

    A. 

    First, I would want to emphasize what challenge we didn’t have to worry about: with the strong foundation, methodologies, and engineering muscle we built delivering multiple generations of Nitro, we had confidence in our ability to execute on building the chips and manufacturing them at high volume, and high quality. So that was a major thing we didn’t need to worry about. Designing for machine learning is one the most challenging, but also the most rewarding tasks I've had the pleasure to participate in. There is an insatiable demand for machine learning right now, so anyone with a good product won’t have any issues finding customer demand. The demand is there, but there are a couple of challenges.

    Related content
    Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

    The first is that customers want ‘just works’ solutions because they have enough challenges to work on the science side. So they are looking for a frictionless migration from the incumbent, let's say GPU-based machine learning, to AWS Trainium or AWS Inferentia. Our biggest challenge is to hide all the complexity so it’s what we refer to internally as boring to migrate. We don’t want our customers, the scientists and researchers, to have to think about moving from one piece of hardware to another. This is a challenge because the incumbent GPUs, specifically NVIDIA, have done a very good job developing broadly adopted technologies. The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium. That’s a hefty task and one of our internal challenges as a team.

    Trainium artwork from AWS website
    "The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium," says Bshara.

    The second challenge is more external; it’s the fact that science and machine learning are moving very fast. As an organization that is building hardware, our job is to predict what customers will need three, four, five years down the road because the development cycle for a chip can be two years, and then it gets deployed for three years. The lifecycle is around five years and trying to predict how the needs of scientists and the machine-learning community will evolve over that time span is difficult. Unlike CPU workloads, which aren’t evolving very quickly, machine learning workloads are, and it’s a bit of an art to keep apace. I would give ourselves a high score, not a perfect score, in being efficient in terms of execution and cost, while still being future proof. It’s the art of predicting what customers will need three years from now, while still executing on time and budget. These things only come with experience, and I’m fortunate to be part of a great team that has the experience to strike the right balance between cost, schedule, and future-proofing the product.

  5. Q. 

    At the recent re:MARS conference Rohit Prasad, Amazon senior vice president and Alexa head scientist, said the voice assistant is interacting with customers billions of times each week. Alexa is powered by EC2 Inf1 instances, which use AWS Inferentia chips. Why is it more effective for Alexa workloads to take advantage of this kind of specialized processing versus more general-purpose GPUs?

    A. 

    Alexa is one of those Amazon technologies that we want to bring to as many people as possible. It’s also a great example of the Amazon flywheel; the more people use it, the more value it delivers. One of our goals is to provide this service with as low latency as possible, and at the lowest cost possible, and over time improve the machine-learning algorithms behind Alexa. When people say improving Alexa, it really means handling much more complex machine learning, much more sophisticated models while maintaining the performance, and low latency. Using Inferentia, the chip, and Inf1, the EC2 instances that actually hosts all of these chips, Alexa is able to run much more advanced machine learning algorithms at lower costs and with lower latency than a standard general-purpose chip. It's not that the general-purpose chip couldn't do the job, it's that it would do so at higher costs and higher latency. With Inferentia we deliver lower latency and support much more sophisticated algorithms. This results in customers having a better experience with Alexa, and benefitting from a smarter Alexa.

  6. Q. 

    AI has been called the new electricity. But as ML models become increasingly large and complex as you just discussed, there also are concerns that energy consumption for AI model training and inference is damaging to the environment. At the chip level, what can be done to reduce the environmental impact of ML model training and Inference?

    A. 

    What we can do at the chip level, at the EC2 level, is actually work on three vectors, which we’re doing right now. The first is drive to lower power quickly by using more advanced silicon processes. Every time we build a chip in an advanced silicon process we're utilizing new semiconductor processes with smaller transistors that require less power for the same work. Because of our focus on efficient execution, we can deliver to EC2 customers a new chip based on a more modern, power-efficient silicon process every 18 months or so.

    The second vector is building more technologies, trying to accelerate in hardware and in algorithms, to get training and inference done faster. The faster we can handle training and inference, the less power is consumed. For example, one of the technologies we innovated in the last Trainium chip was something called stochastic rounding which, depending upon which measure you're looking at for some neural workloads, could accelerate neural network training by up to 30%. When you say 30% less time that translates into 30% less power.

    Another thing we're doing at the algorithmic level is offering different data types. For example, historically machine learning used a 32-bit floating point. Now we’re offering multiple versions of 16-bit and a few versions of 8-bit. When these different data types are used, they not only accelerate machine learning training, they significantly reduce the power for the same amount of workload. For example, doing matrix multiplication on a 16-bit float point is less than one-third the total power if we had done it with 32-bit floating point. The ability to add things like stochastic rounding or new data types at the algorithmic level provides a step-function improvement in power consumption for the same amount of workload.

    The third vector is credit to EC2 and the Nitro System, we’re offering more choice for customers. There are different chips optimized for different workloads, and the best way for customers to save energy is to follow the classic Amazon mantra – the everything store. We offer all different types of chips, including multiple generations of Nvidia GPUs, Intel Habana, and Trainium, and share with the customer the power profile and performance of each of the instances hosting these chips, so the customer can choose the right chip for the right workload, and optimize for the lowest possible power consumption at the lowest cost.

  7. Q. 

    I’ve focused primarily on machine learning. But let’s turn our attention to more general-purpose workloads running in the cloud, and your work on Graviton processors for Amazon EC2. 

    A. 

    Yes, in a way Graviton is the opposite of our work on machine learning, in the sense that the focus is on building server processors for general-purpose workloads running in EC2. The market for general-purpose chips has been there for thirty or forty years, and the workloads themselves haven’t evolved as rapidly as machine learning, so when we started designing, the target was clear to us.

    This is an image of a Graviton silicon chip with a blue background.
    AWS is three generations into its Graviton chip journey, and Bshara says the company has plans for "many more generations" to come.

    Because this segment of the industry wasn’t moving that fast, we felt our challenge was to move the industry faster, specifically in offering step function improvement in performance, and reducing costs, and power consumption. There are many times when you build plans, especially for chips, where the original plans are rosy, but as the development progresses you have to make tradeoffs, and the actual product falls short of the original promise. With first-generation Graviton, we experienced the opposite; we were pleasantly surprised that both performance and power efficiency turned out better than our original plan. That’s very rare in our industry.

    Related content
    Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

    The same has been true with Graviton2. Because of this there has been a massive movement inside Amazon for general workloads to move to Graviton2, mainly to save on power, but also on costs. For the same workloads, Graviton2 will on average consume 60% less power than same-generation competitive offerings, and we’re passing on those cost-savings to customers. Outside Amazon, at least 48 of AWS’s top 50 customers have not just tested, but have production workloads running on Graviton2.

    In May, Graviton3 processors became available, so it’s still Day 1 as we’re only three generations into this journey. We have plans for many more generations, but it’s always very satisfying and rewarding to hear how boring it is for customers to migrate to Graviton, and to hear all the customer success stories. It is incredibly satisfying to come to work every day and hear some of the success stories from the tens of thousands of customers using Graviton.

  8. Q. 

    You have more than 100 openings on your jobs page. What kind of talent are you seeking? And what are the characteristics of employees who succeed at Annapurna Labs? 

    A. 

    We are seeking individuals who like to work on cutting-edge technology, and approach challenges from a principles-first approach because most of the challenges we confront haven’t been dealt with before. While actual experience is important, we place greater value on proper thinking and a principles-first mindset, or reasoning from first principles.

    We also value individuals who enjoy working in a dynamic environment where the solution isn’t always the same hammer after the same nail. Given our principles-first approach, many of our challenges get solved at the chip level, the terminal level, and the system level, so we seek individuals who have systems understanding, and are skilled at working across disciplines. It’s difficult for an individual with a single discipline, or single domain knowledge, who isn’t willing to challenge her or himself by learning across other domains, to succeed at Annapurna. Last but not least, we look for individuals who focus on delivering, within a team environment. We recognize ideas are “cheap”, and what makes the difference is delivering on the idea all the way to production. Ideas are a commodity. Executing on those ideas is not.

  9. Q. 

    I've read that Billy and you share the belief that if you can dream it, you can do it. So what's your dream about future silicon development?

    A. 

    That’s true, and it’s the main reason Billy and I wanted to join AWS, because we had a common vision that there’s so much value we can bring to customers, and AWS leadership and Amazon in general were willing to invest in that vision for the long term. We agreed to be acquired by Amazon not only because of the funding and our common long-term vision, but also because building components for our own data centers would allow us to quickly deliver customer value. We’ve been super happy with the relationship for many reasons, but primarily because of our ability to have customer impact at global scale.

    At Amazon, we operate at such a scale and with such a diversity of customers that we are capable of doing application-specific, or domain-specific acceleration. Machine learning is one example of that. What we’ve done with Aqua (advanced query accelerator) for Amazon Redshift is another example where we’ve delivered hardware-based acceleration for analytics. Our biggest challenge these days is deciding what project to prioritize. There’s no shortage of opportunities to deliver value. The only way we’re able to take this approach is because of AWS. Developing silicon requires significant investment, and the only way to gain a good return on that investment is by having a lot of volume and cost-effective development, and we’ve been able to develop a large, and successful customer base with AWS.

    I should also add that before joining Amazon we thought we really took a long-term perspective. But once you sit in Amazon meetings, you realize what long-term strategic thinking really means. I continue to learn every day about how to master that. Suffice to say, we have a product roadmap, and a technology and investment strategy that extends to 2032. As much uncertainty as there is in the future, there are a few things we’re highly convicted in, and we’re investing in them, even though they may be ten years out. I obviously can’t disclose future product plans, but we continue to dream big on behalf of our customers.

    The AWS Annapurna Labs team has more than 100 job openings for software developers, physical design engineers, design specification engineers, and many other technical roles. The team has development centers in the U.S. and Israel.

Research areas

Related content

CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
CA, BC, Vancouver
Have you ever wondered how Amazon predicts delivery times and ensures your orders arrive exactly when promised? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's multimodal logistics network that includes planes, trucks, and vans sound exciting to you? Are you interested in developing Generative AI solutions using state-of-the-art LLM techniques to revolutionize how Amazon optimizes the fulfillment of millions of customer orders globally with unprecedented scale and precision? If so, then we want to talk with you! Join our team to apply the latest advancements in Generative AI to enhance our capability and speed of decision making. Fulfillment Planning & Execution (FPX) Science team within SCOT- Fulfillment Optimization owns and operates optimization, machine learning, and simulation systems that continually optimize the fulfillment of millions of products across Amazon’s network in the most cost-effective manner, utilizing large scale optimization, advanced machine learning techniques, big data technologies, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing, and supply. The team has embarked on its Generative AI to build the next-generation AI agents and LLM frameworks to promote efficiency and improve productivity. We’re looking for a passionate, results-oriented, and inventive machine learning scientist who can design, build, and improve models for our outbound transportation planning systems. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML / AI solutions to solve those problems at scale. You will work independently in an ambiguous environment while collaborating with cross-functional teams to drive forward innovation in the Generative AI space. Key job responsibilities * Design, develop, and evaluate tailored ML/AI, models for solving complex business problems. * Research and apply the latest ML / AI techniques and best practices from both academia and industry. * Identify and implement novel Generative AI use cases to deliver value. * Design and implement Generative AI and LLM solutions to accelerate development and provide intuitive explainability of complex science models. * Develop and implement frameworks for evaluation, validation, and benchmarking AI agents and LLM frameworks. * Think about customers and how to improve the customer delivery experience. * Use analytical techniques to create scalable solutions for business problems. * Work closely with software engineering teams to build model implementations and integrate successful models and algorithms in production systems at large scale. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life You will have the opportunity to learn how Amazon plans for and executes within its logistics ne twork including Fulfillment Centers, Sort Centers, and Delivery Stations. In this role, you will design and develop Machine Learning / AI models with significant scope, impact, and high visibility. You will focus on designing, developing, and deploying Generative AI solutions at scale that will improve efficiency, increase productivity, accelerate development, automate manual tasks, and deliver value to our internal customers. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team FPX Science tackles some of the most mathematically complex challenges in transportation planning and execution space to improve Amazon's operational efficiency worldwide at a scale that is unique to Amazon. We own the long-term and intermediate-term planning of Amazon’s global fulfillment centers and transportation network as well as the short-term network planning and execution that determines the optimal flow of customer orders through Amazon fulfillment network. FPX science team is a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across SCOT - Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We disambiguate complex supply chain problems and create innovative data-driven solutions to solve those problems at scale with a mix of science-based techniques including Operations Research, Simulation, Machine Learning, and AI to tackle some of our biggest technical challenges. In addition, we are incorporating the latest advances in Generative AI and LLM techniques in how we design, develop, enhance, and interpret the results of these science models.
US, WA, Bellevue
Amazon LEO is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. The Amazon LEO Infrastructure Data Engineering, Analytics, and Science team owns designing, implementing, and operating systems/models that support the optimal demand/capacity planning function. We are looking for a talented scientist to implement LEO's long-term vision and strategy for capacity simulations and network bandwidth optimization. This effort will be instrumental in helping LEO execute on its business plans globally. As one of our valued team members, you will be obsessed with matching our standards for operational excellence with a relentless focus on delivering results. Key job responsibilities In this role, you will: Work cross-functionally with product, business development, and various technical teams (engineering, science, R&D, simulations, etc.) to implement the long-term vision, strategy, and architecture for capacity simulations and inventory optimization. Design and deliver modern, flexible, scalable solutions to complex optimization problems for operating and planning satellite resources. Contribute to short and long terms technical roadmap definition efforts to predict future inventory availability and key operational and financial metrics across the network. Design and deliver systems that can keep up with the rapid pace of optimization improvements and simulating how they interact with each other. Analyze large amounts of satellite and business data to identify simulation and optimization opportunities. Synthesize and communicate insights and recommendations to audiences of varying levels of technical sophistication to drive change across LEO. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Sr. Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Build, adapt and evaluate ML models for life sciences applications - Collaborate with a cross-functional team of ML scientists, biologists, software engineers and product managers - Mentor junior scientists
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, TX, Austin
Amazon Security is seeking a Senior Applied Scientist to lead GenAI acceleration within the Secure Third Party Tools (S3T) organization. The S3T team has bold ambitions to re-imagine security products that serve Amazon's pace of innovation at our global scale. This role will focus on leveraging large language models and agentic AI to transform third-party security risk management, automate complex vendor assessments, streamline controllership processes, and dramatically reduce assessment cycle times. You will drive builder efficiency and deliver bar-raising security engagements across Amazon. Key job responsibilities Own and drive end-to-end technical vision for large-scoped science initiatives focused on third-party security risk management, independently defining research agendas, success metrics, and multi-quarter roadmaps with minimal oversight. Pioneer transformative approaches to automate third-party security review processes using state-of-the-art large language models, designing intelligent systems for vendor assessment document analysis, security questionnaire automation, risk signal extraction, and compliance decision support. Architect and lead development of advanced GenAI and agentic frameworks including multi-agent orchestration, RAG pipelines, and autonomous workflows purpose-built for third-party risk evaluation, security documentation processing, and scalable vendor assessment at enterprise scale. Build ML-powered risk intelligence capabilities that enhance third-party threat detection, vulnerability classification, and continuous monitoring throughout the vendor lifecycle. Serve as strategic thought partner to senior leadership and business stakeholders, translating complex AI capabilities into high-impact third-party security solutions, influencing investment priorities, and delivering measurable risk reduction and operational efficiency. Partner with Software Engineering and Data Engineering as technical co-owner to deploy production-grade ML solutions that integrate seamlessly with existing third-party risk management workflows and scale across the organization. Mentor and elevate scientists and engineers, establishing best practices for security-focused AI development while advancing the state of the art through applied research and publications. About the team Security is central to maintaining customer trust and delivering delightful customer experiences. At Amazon, our Security organization is designed to drive bar-raising security engagements. Our vision is that Builders raise the Amazon security bar when they use our recommended tools and processes, with no overhead to their business. Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores. Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
JP, 13, Tokyo
Elevate Your Economic Research at the Forefront of Global Retail Innovation We're seeking a brilliant economics researcher to join our dynamic team in Tokyo, where your analytical skills will drive transformative insights across Amazon's global retail ecosystem. As an intern, you'll collaborate with world-class economists, data scientists, and business leaders to solve complex challenges that shape the future of e-commerce. A day in the life Your day will be filled with intellectual exploration and impactful problem-solving. You'll dive deep into large-scale datasets, develop sophisticated econometric models, and translate complex economic research into actionable business strategies. Expect to engage in collaborative discussions, leverage modern analytical tools, and contribute to projects that have real-world implications for our global customers.
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, VA, Herndon
The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Machine Learning Engineer to join our team at Amazon Web Services (AWS). Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? In this role, you'll work directly with customers to design, evangelize, implement, and scale AI/ML solutions that meet their technical requirements and business objectives. You'll be a key player in driving customer success through their AI transformation journey, providing deep expertise in machine learning, generative AI, and best practices throughout the project lifecycle. As a Machine Learning Engineer within the AWS Professional Services organization, you will be proficient in architecting complex, scalable, and secure machine learning solutions tailored to meet the specific needs of each customer. You'll help customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine tune the right models, and define paths to navigate technical or business challenges. Working closely with stakeholders, you'll assess current data infrastructure, develop proof-of-concepts, and propose effective strategies for implementing AI and generative AI solutions at scale. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. This position requires that the candidate selected must currently possess and maintain an active TS/SCI security clearance with polygraph. Key job responsibilities - Designing and implementing complex, scalable, and secure AI/ML solutions on AWS tailored to customer needs, including selecting and fine-tuning appropriate models for specific use cases - Developing and deploying machine learning models and generative AI applications that solve real-world business problems, conducting experiments and optimizing for performance at scale - Collaborating with customer stakeholders to identify high-value AI/ML use cases, gather requirements, and propose effective strategies for implementing machine learning and generative AI solutions - Providing technical guidance on applying AI, machine learning, and generative AI responsibly and cost-efficiently, troubleshooting throughout project delivery and ensuring adherence to best practices - Acting as a trusted advisor to customers on the latest advancements in AI/ML, emerging technologies, and innovative approaches to leveraging diverse data sources for maximum business impact - Sharing knowledge within the organization through mentoring, training, creating reusable AI/ML artifacts, and working with team members to prototype new technologies and evaluate technical feasibility About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.