Line art of silicon chips developed by Annapurna Labs since its acquisition by Amazon in 2015.  Line art includes mentions of Graviton, Inferentia, and Trainium chips, along with AWS Nitro system.
Amazon's acquisition of Annapurna Labs in 2015 has led to, among other advancements, the development of five generations of the AWS Nitro system, three generations of Arm-based Graviton processors, as well as AWS Trainium and AWS Inferentia chips that are optimized for machine learning training and inference. These chips and systems were discussed at the AWS Silicon Innovation Day event on August 3. The event included a talk by Nafea Bshara, AWS vice president and distinguished engineer, on silicon innovation emerging from Annapurna Labs.

How silicon innovation became the ‘secret sauce’ behind AWS’s success

Nafea Bshara, AWS vice president and distinguished engineer, discusses Annapurna Lab’s path to silicon success; Annapurna co-founder was a featured speaker at AWS Silicon Innovation Day virtual event.

Nafea Bshara, Amazon Web Services vice president and distinguished engineer, and the co-founder of Annapurna Labs, an Israeli-based chipmaker that Amazon acquired in 2015, maintains a low profile, as does his friend and Annapurna co-founder, Hrvoye (Billy) Bilic.

Nafea Bshara headshot image
Nafea Bshara, AWS vice president and distinguished engineer.

Each executive’s LinkedIn profile is sparse, in fact, Bilic’s is out of date.

“We hardly do any interviews; our philosophy is to let our products do the talking,” explains Bshara.

Those products, and silicon innovations, have done a lot of talking since 2015, as the acquisition has led to, among other advancements, the development of five generations of the AWS Nitro System, three generations (1, 2, 3) of custom-designed, Arm-based Graviton processors that support data-intensive workloads, as well as AWS Trainium, and AWS Inferentia chips optimized for machine learning training and inference.

Some observers have described the silicon that emerges from Annapurna Labs in the U.S. and Israel as AWS’s “secret sauce”.

Nafea’s silicon journey began at Technion University in Israel, where he earned bachelor’s and master’s degrees in computer engineering, and where he first met Hrvoye. The two then went on to work for Israel-based Galileo, a company that made chips for networking switches, and controllers for networking routers. Galileo was acquired by U.S. semiconductor manufacturer Marvell in 2000, where Bshara and Bilic would work for a decade before deciding to venture out on their own.

“We had developed at least 50 different chips together,” Bshara explained, “so we had a track record and a first-hand understanding of customer needs, and the market dynamics. We could see that some market segments were being underserved, and with the support from our spouses, Lana and Liat, and our funding friends Avigdor [Willenz] and Manuel [Alba], we started Annapurna Labs.”

That was mid-2011, and three and half years later Amazon acquired the company. The two friends have continued their journey at Amazon, where their team’s work has spoken for itself.

Last year, industry analyst David Vellante praised AWS’s “revolution in system architecture.”

“Much in the same way that AWS defined the cloud operating model last decade, we believe it is once again leading in future systems. The secret sauce underpinning these innovations is specialized designs… We believe these moves position AWS to accommodate a diversity of workloads that span cloud, data center as well as the near and far edge.”

Annapurna’s work was highlighted during the AWS Silicon Innovation Day virtual event on August 3. In fact, Nafea was a featured speaker in the event. The Silicon Innovation Day broadcast, which highlighted AWS silicon innovations, included a keynote from David Brown, vice president, Amazon EC2; a talk about the history of AWS silicon innovation from James Hamilton, Amazon senior vice president and distinguished engineer who holds more than 200 patents in 22 countries in server and datacenter infrastructure, database, and cloud computing; and a fireside chat on the Nitro System with Anthony Liguori, AWS vice president and distinguished engineer, and Jeff Barr, AWS vice president and chief evangelist.

In advance of the silicon-innovation event, Amazon Science connected with Bshara to discuss the history of Annapurna, how the company and the industry have evolved in the past decade, and what the future portends.

  1. Q. 

    You co-founded Annapurna Labs just over 11 years ago. Why Annapurna?

    A. 

     I co-founded the company with my longtime partner, Billy, and with an amazing set of engineers and leaders who believed in the mission. We started Annapurna Labs because we looked at the way the chip industry was investing in infrastructure and data centers; it was minuscule at that time because everybody was going after the gold rush of mobile phones, smartphones, and tablets.

    We believed the industry was over indexing on investment for mobile, and under investing in the data center. The data center market was underserved. That, combined with the fact that there was increasing disappointment with the ineffective and non-productive method of developing chips, especially when compared with software development. The productivity of software developers had improved significantly in the past 25 years, while the productivity of chip developers hadn’t improved much since the ‘90s. In assessing the opportunity, we saw a data-center market that was being underserved, and an opportunity to redefine chip development with greater productivity, and with a better business model. Those factors contributed to us starting Annapurna Labs.

  2. Q. 

    How has the chip industry evolved in the past 11 years?

    A. 

    The chip industry realized, a bit late, but nevertheless realized that productivity and time to market needed to be addressed. While Annapurna has been a pioneer in advancing productivity and time to market, many others are following in our footsteps and transitioning to a building-blocks-centric development mindset, similar to how the software industry moved toward object-oriented, and service-oriented software design.

    Chip companies have now transitioned to what we refer to as an intellectual property-oriented, or IP-oriented, correct-by-design approach. Secondly, the chip industry has adopted the cloud. Cloud adoption has led to an explosion of compute power for building chips. Using the cloud, we are able to use compute in a ‘bursty’ way and in parallel. We and our chip-industry colleagues couldn’t deliver the silicon we do today without the cloud. This has led to the creation of a healthy market where chip companies have realized they don’t need to build everything in house, in much the same way software companies have realized they can buy libraries from open source or other library providers. The industry has matured to the point where now there is a healthy business model around buying building blocks, or IPs, from providers like Arm, Synopsys, Alphawave, or Cadence.

  3. Q. 

    Annapurna Labs was named after one of the tallest peaks in the Himalayas that’s regarded as one of the most dangerous mountains to climb. What's been the tallest peak you've had to climb?

    A. 

    I’m up in the cloud, I don’t need to climb anything [laughing]. Yes, Billy and I picked the name Annapurna Labs for a couple of reasons. First, Billy and I originally planned to climb Annapurna before we started the company. But then we got excited about the idea, acquired funding, and suddenly time was of the essence, so we put our climbing plans on hold and started the company. We called it Annapurna because at that time – and it’s true even today – there is a high barrier to entry in starting a chip company. The challenge is steep, and the risk is high, so it’s just like climbing Annapurna. We also believed that we wanted to reach a point above the clouds where you could see things very clearly, and without clutter. That’s always been a mantra for us as a company: Avoid the clutter, and look far into the future to understand what the customer really needs versus getting distracted by the day-to-day noise.

  4. Q. 

    What are the unique challenges you face in designing chips for ML training and inference versus more general CPU designs?

    A. 

    First, I would want to emphasize what challenge we didn’t have to worry about: with the strong foundation, methodologies, and engineering muscle we built delivering multiple generations of Nitro, we had confidence in our ability to execute on building the chips and manufacturing them at high volume, and high quality. So that was a major thing we didn’t need to worry about. Designing for machine learning is one the most challenging, but also the most rewarding tasks I've had the pleasure to participate in. There is an insatiable demand for machine learning right now, so anyone with a good product won’t have any issues finding customer demand. The demand is there, but there are a couple of challenges.

    Related content
    Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

    The first is that customers want ‘just works’ solutions because they have enough challenges to work on the science side. So they are looking for a frictionless migration from the incumbent, let's say GPU-based machine learning, to AWS Trainium or AWS Inferentia. Our biggest challenge is to hide all the complexity so it’s what we refer to internally as boring to migrate. We don’t want our customers, the scientists and researchers, to have to think about moving from one piece of hardware to another. This is a challenge because the incumbent GPUs, specifically NVIDIA, have done a very good job developing broadly adopted technologies. The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium. That’s a hefty task and one of our internal challenges as a team.

    Trainium artwork from AWS website
    "The customer shouldn’t see or experience any of the hard work we’ve done in developing our chips; what the customer should experience is that it’s transparent and frictionless to transition to Inferentia and Trainium," says Bshara.

    The second challenge is more external; it’s the fact that science and machine learning are moving very fast. As an organization that is building hardware, our job is to predict what customers will need three, four, five years down the road because the development cycle for a chip can be two years, and then it gets deployed for three years. The lifecycle is around five years and trying to predict how the needs of scientists and the machine-learning community will evolve over that time span is difficult. Unlike CPU workloads, which aren’t evolving very quickly, machine learning workloads are, and it’s a bit of an art to keep apace. I would give ourselves a high score, not a perfect score, in being efficient in terms of execution and cost, while still being future proof. It’s the art of predicting what customers will need three years from now, while still executing on time and budget. These things only come with experience, and I’m fortunate to be part of a great team that has the experience to strike the right balance between cost, schedule, and future-proofing the product.

  5. Q. 

    At the recent re:MARS conference Rohit Prasad, Amazon senior vice president and Alexa head scientist, said the voice assistant is interacting with customers billions of times each week. Alexa is powered by EC2 Inf1 instances, which use AWS Inferentia chips. Why is it more effective for Alexa workloads to take advantage of this kind of specialized processing versus more general-purpose GPUs?

    A. 

    Alexa is one of those Amazon technologies that we want to bring to as many people as possible. It’s also a great example of the Amazon flywheel; the more people use it, the more value it delivers. One of our goals is to provide this service with as low latency as possible, and at the lowest cost possible, and over time improve the machine-learning algorithms behind Alexa. When people say improving Alexa, it really means handling much more complex machine learning, much more sophisticated models while maintaining the performance, and low latency. Using Inferentia, the chip, and Inf1, the EC2 instances that actually hosts all of these chips, Alexa is able to run much more advanced machine learning algorithms at lower costs and with lower latency than a standard general-purpose chip. It's not that the general-purpose chip couldn't do the job, it's that it would do so at higher costs and higher latency. With Inferentia we deliver lower latency and support much more sophisticated algorithms. This results in customers having a better experience with Alexa, and benefitting from a smarter Alexa.

  6. Q. 

    AI has been called the new electricity. But as ML models become increasingly large and complex as you just discussed, there also are concerns that energy consumption for AI model training and inference is damaging to the environment. At the chip level, what can be done to reduce the environmental impact of ML model training and Inference?

    A. 

    What we can do at the chip level, at the EC2 level, is actually work on three vectors, which we’re doing right now. The first is drive to lower power quickly by using more advanced silicon processes. Every time we build a chip in an advanced silicon process we're utilizing new semiconductor processes with smaller transistors that require less power for the same work. Because of our focus on efficient execution, we can deliver to EC2 customers a new chip based on a more modern, power-efficient silicon process every 18 months or so.

    The second vector is building more technologies, trying to accelerate in hardware and in algorithms, to get training and inference done faster. The faster we can handle training and inference, the less power is consumed. For example, one of the technologies we innovated in the last Trainium chip was something called stochastic rounding which, depending upon which measure you're looking at for some neural workloads, could accelerate neural network training by up to 30%. When you say 30% less time that translates into 30% less power.

    Another thing we're doing at the algorithmic level is offering different data types. For example, historically machine learning used a 32-bit floating point. Now we’re offering multiple versions of 16-bit and a few versions of 8-bit. When these different data types are used, they not only accelerate machine learning training, they significantly reduce the power for the same amount of workload. For example, doing matrix multiplication on a 16-bit float point is less than one-third the total power if we had done it with 32-bit floating point. The ability to add things like stochastic rounding or new data types at the algorithmic level provides a step-function improvement in power consumption for the same amount of workload.

    The third vector is credit to EC2 and the Nitro System, we’re offering more choice for customers. There are different chips optimized for different workloads, and the best way for customers to save energy is to follow the classic Amazon mantra – the everything store. We offer all different types of chips, including multiple generations of Nvidia GPUs, Intel Habana, and Trainium, and share with the customer the power profile and performance of each of the instances hosting these chips, so the customer can choose the right chip for the right workload, and optimize for the lowest possible power consumption at the lowest cost.

  7. Q. 

    I’ve focused primarily on machine learning. But let’s turn our attention to more general-purpose workloads running in the cloud, and your work on Graviton processors for Amazon EC2. 

    A. 

    Yes, in a way Graviton is the opposite of our work on machine learning, in the sense that the focus is on building server processors for general-purpose workloads running in EC2. The market for general-purpose chips has been there for thirty or forty years, and the workloads themselves haven’t evolved as rapidly as machine learning, so when we started designing, the target was clear to us.

    This is an image of a Graviton silicon chip with a blue background.
    AWS is three generations into its Graviton chip journey, and Bshara says the company has plans for "many more generations" to come.

    Because this segment of the industry wasn’t moving that fast, we felt our challenge was to move the industry faster, specifically in offering step function improvement in performance, and reducing costs, and power consumption. There are many times when you build plans, especially for chips, where the original plans are rosy, but as the development progresses you have to make tradeoffs, and the actual product falls short of the original promise. With first-generation Graviton, we experienced the opposite; we were pleasantly surprised that both performance and power efficiency turned out better than our original plan. That’s very rare in our industry.

    Related content
    Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

    The same has been true with Graviton2. Because of this there has been a massive movement inside Amazon for general workloads to move to Graviton2, mainly to save on power, but also on costs. For the same workloads, Graviton2 will on average consume 60% less power than same-generation competitive offerings, and we’re passing on those cost-savings to customers. Outside Amazon, at least 48 of AWS’s top 50 customers have not just tested, but have production workloads running on Graviton2.

    In May, Graviton3 processors became available, so it’s still Day 1 as we’re only three generations into this journey. We have plans for many more generations, but it’s always very satisfying and rewarding to hear how boring it is for customers to migrate to Graviton, and to hear all the customer success stories. It is incredibly satisfying to come to work every day and hear some of the success stories from the tens of thousands of customers using Graviton.

  8. Q. 

    You have more than 100 openings on your jobs page. What kind of talent are you seeking? And what are the characteristics of employees who succeed at Annapurna Labs? 

    A. 

    We are seeking individuals who like to work on cutting-edge technology, and approach challenges from a principles-first approach because most of the challenges we confront haven’t been dealt with before. While actual experience is important, we place greater value on proper thinking and a principles-first mindset, or reasoning from first principles.

    We also value individuals who enjoy working in a dynamic environment where the solution isn’t always the same hammer after the same nail. Given our principles-first approach, many of our challenges get solved at the chip level, the terminal level, and the system level, so we seek individuals who have systems understanding, and are skilled at working across disciplines. It’s difficult for an individual with a single discipline, or single domain knowledge, who isn’t willing to challenge her or himself by learning across other domains, to succeed at Annapurna. Last but not least, we look for individuals who focus on delivering, within a team environment. We recognize ideas are “cheap”, and what makes the difference is delivering on the idea all the way to production. Ideas are a commodity. Executing on those ideas is not.

  9. Q. 

    I've read that Billy and you share the belief that if you can dream it, you can do it. So what's your dream about future silicon development?

    A. 

    That’s true, and it’s the main reason Billy and I wanted to join AWS, because we had a common vision that there’s so much value we can bring to customers, and AWS leadership and Amazon in general were willing to invest in that vision for the long term. We agreed to be acquired by Amazon not only because of the funding and our common long-term vision, but also because building components for our own data centers would allow us to quickly deliver customer value. We’ve been super happy with the relationship for many reasons, but primarily because of our ability to have customer impact at global scale.

    At Amazon, we operate at such a scale and with such a diversity of customers that we are capable of doing application-specific, or domain-specific acceleration. Machine learning is one example of that. What we’ve done with Aqua (advanced query accelerator) for Amazon Redshift is another example where we’ve delivered hardware-based acceleration for analytics. Our biggest challenge these days is deciding what project to prioritize. There’s no shortage of opportunities to deliver value. The only way we’re able to take this approach is because of AWS. Developing silicon requires significant investment, and the only way to gain a good return on that investment is by having a lot of volume and cost-effective development, and we’ve been able to develop a large, and successful customer base with AWS.

    I should also add that before joining Amazon we thought we really took a long-term perspective. But once you sit in Amazon meetings, you realize what long-term strategic thinking really means. I continue to learn every day about how to master that. Suffice to say, we have a product roadmap, and a technology and investment strategy that extends to 2032. As much uncertainty as there is in the future, there are a few things we’re highly convicted in, and we’re investing in them, even though they may be ten years out. I obviously can’t disclose future product plans, but we continue to dream big on behalf of our customers.

    The AWS Annapurna Labs team has more than 100 job openings for software developers, physical design engineers, design specification engineers, and many other technical roles. The team has development centers in the U.S. and Israel.

Research areas

Related content

US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.