Prem Natarajan, Alexa AI vice president of natural understanding, giving a presentation
Prem Natarajan, Alexa AI vice president of natural understanding
Credit: Micron Technology, Inc.

3 questions: Prem Natarajan on issues of AI fairness and bias

Alexa AI vice president of natural understanding Prem Natarajan discusses the upcoming cycle for the National Science Foundation collaboration on fairness in AI, his participation on the Partnership on AI board, and issues related to bias in natural language processing.

A year ago, Amazon and the National Science Foundation (NSF) announced a $20 million collaboration to fund academic research on fairness in AI over a three-year period. Recently, Erwin Gianchandani, deputy assistant director for Computer and Information Science and Engineering at NSF, discussed the work of the first ten recipients of the program’s grants. Here, Prem Natarajan, Alexa AI vice president of natural understanding, and the Amazon executive who helped launch the collaboration with NSF, discusses the next cycle of upcoming proposals from academic researchers, his work with the Partnership on AI, and what can be done to address bias in natural language processing models.

The 2020 award cycle for the Fairness in AI program in conjunction with the NSF recently launched. Full proposals are due by July 13th. What are you hoping to see in the next round of proposals?

We collaborated with the NSF to launch the Fairness in AI program with the goal of promoting academic research in this important aspect of AI. Our primary objective for engaging with academia on issues related to fairness and transparency in AI is to get many different and diverse perspectives focused on the challenge. The teams selected by NSF in the first round are addressing a variety of topics – from principled frameworks for developing and certifying fair AI, to domain-focused applications such as fair recommender systems for foster care services. To that end, I hope that the second round will build upon the success of the first round by bringing an even greater diversity of perspectives on definitions and perceptions of fairness. Without such diversity the entire field of research into fair AI will become a self-defeating exercise.

Another hope I have for the second round, and indeed for all rounds of this program, is that it will drive the creation of a portfolio of open-source artifacts – such as data sets, metrics, tools, and testing methodologies – which all stakeholders in AI can use to promote the use of fair AI. Such readily available artifacts will make it easier for the community to learn from one another, promote the replication of research results, and, ultimately, advance the state of the art more rapidly. Put differently, we hope that open access to the research under this program will form a rising tide that lifts all boats. It also seems natural that methodologies for fairness will benefit from broad and inclusive discussion across relevant academic and scientific communities.

The deadline for this next round of proposal submissions is July 13th. We hope that the response to this round will be even stronger than for the first. NSF selects the recipients, and I am sure NSF’s reviewers are looking forward to a summer of interesting reading!

You are Amazon’s representative on the Partnership on AI (PAI) board of directors. This unique organization has thematic pillars related to safety-critical AI; fair, transparent and accountable AI; AI labor and the economy; collaborations between AI systems and people; social and societal influences of AI; and AI and social good. It’s an ambitious, broad agenda. You’re fairly new in your role with PAI; what most excites you about the work being done there?

The most exciting aspect of the Partnership on AI is that it is a unique multi-sector forum where I get to listen to and learn from the incredible diversity of perspectives – from industry, academia, non-profits, and social justice groups. PAI today counts amongst its members about 59 non-profits, 24 academic institutions, and 18 industrial organizations. While I joined the board just a few months ago, I have already attended several meetings and participated in discussions with other PAI members as well as PAI staff. While every member has their own unique perspective on AI, it’s been really interesting and encouraging to see that we all share the same values and many of the same concerns. It should be of no surprise that the issue of equity is top of mind with a concomitant focus on fairness considerations.

Alexa & Friends Twitch show features Prem Natarajan

Earlier this month, Alexa evangelist Jeff Blankenburg interviewed Prem Natarajan live on the 'Alexa & Friends' Twitch show. In the video, they discuss recent advances in natural understanding , and how those advancements translate into better experiences for customers, developers and third-party device manufacturers.

From a technical perspective, I am excited by the number and quality of research initiatives underway at PAI. Many of these initiatives are of critical importance to the future development of the field of AI. Let me give you a couple of examples.

One is the area of fairness, accountability and transparency. There are several projects underway in this area, but I will mention one that to me exemplifies the kind of work that an organization like PAI can do. PAI researchers interviewed practitioners at twenty different organizations and performed an in-depth case study of how explainable AI is used today. This kind of research is very important to AI practitioners because it gives them a referential basis to assess their own work and to identify useful areas for future contributions.

Another example is ABOUT ML, which is focused on developing and sharing best practices as well as on advancing public understanding of AI. A couple of years ago some researchers had proposed the development of an AI model scorecard, along the lines of the nutritional information you get on the back of most food items we buy today. The scorecard would describe the attributes of the data used to train the models, the way in which it was tested, etc. The motivation behind the scorecard is to give other developers or model builders a sense of the strengths and limitations of the model, so they can better estimate and address potential weaknesses in the model for their target use cases. ABOUT ML goes well beyond such a scorecard, focusing on documentation, provenance of data and code artifacts, and other critical attributes of the model development process. Ultimately, only multisector organizations like PAI can successfully drive this kind of initiative, bringing together people across organizations and sectors.

Lastly, there’s an education role that PAI serves that I believe is unique, serving as the bridge between AI technologists and other stakeholders within society, making sure AI technologists are appropriately factoring in the perspectives and concerns of the other stakeholders within society. Some examples here include PAI’s collaborative work with First Draft, a PAI Partner, to help technologists and journalists at digital platforms address growing issues around manipulated media. PAI also helps those stakeholders understand more about how AI technology works, its strengths and its limitations.

You oversee Alexa’s natural understanding team. Natural language processing models have drawn criticism for capturing common social biases with respect to gender and race. A large body of work is emerging related to bias in word embedding and classifiers, and there are many proposals for countermeasures. Can you describe the challenge of bias in NLP models, and give us insight into some of the countermeasures you think are, or could be, effective?

A word embedding is a vector of real numbers representing that word; the core idea is that words with similar meanings map to vectors that are “close” to each other. Word embeddings have become a central feature of modern NLP. While embeddings can be computed using a variety of different techniques, deep learning techniques have proven to be tremendously effective at numerically representing the semantics of a word and concepts, etc. Today, deep learning based embeddings are used for all kinds of processing, from named entity recognition, to question answering, and natural language generation. As a result, the semantics that these embeddings encode greatly influence how we interpret text, the accuracy of those interpretations, and the actions we take in response to those interpretations.

Bias can also manifest in other ways because any system that is based on data can exhibit a majoritarian bias to it.
Prem Natarajan, Alexa AI VP of natural understanding

As word embeddings became prevalent, researchers naturally started looking into their fragilities and shortcomings. One of those fragilities is that the embeddings derive and encode meaning from context, which means that the meaning of a word is largely controlled by the different contexts in which that word is observed in the training data. While that seems like a reasonable basis for inferring meaning, it leads to undesirable consequences. My friend Kai-Wei Chang at UCLA is one of the early investigators of bias in NLP and he uses the following example: take the vector for doctor and you subtract the vector for man; when you add the vector for woman, you should in principle get the vector for doctor again, or a female doctor. But instead the resulting vector is close to the vector for ‘nurse.’ What this example shows is that the latent biases in human-generated text get encoded into the embeddings. One example of a system that is affected by these biases is natural language generation. Many studies have shown that such biases can result in the generation of text that exhibits the same biases and prejudices as humans, sometimes in an amplified manner. Left unmitigated, such systems could reinforce human biases and stereotypes.

Bias can also manifest in other ways because any system that is based on data can exhibit a majoritarian bias to it. So, for example, different groups in different parts of the world may speak the same language with different dialects, but the most frequent dialect will likely see the best performance only because it forms the major proportion of the training data. But we don’t want dialect or accent to determine how well the system will work for an individual. We want our systems to work equally well for everyone, regardless of geography, dialect, gender, or any other irrelevant factor.

Methodologically, we counter the impact of bias by using a principled approach to characterize the dimensions of bias and associated impact, and by developing techniques that are robust to these biasing factors. For example, it stands to reason that speech recognition systems should ignore parts of the signal that are not useful for recognizing the words that were spoken. It shouldn’t really matter whether the voice is male or female, only the actual words should. Similarly for natural language understanding, we want to be able to understand the queries of different groups of people regardless of the stylistic or syntactic variations of the language used. Scientists at Amazon and elsewhere are exploring a broad variety of approaches such as de-biasing techniques, adversarial invariance, active learning, and selective sampling. Personally, I find the adversarial approaches to both testing and to generating bias or nuisance invariant representations most appealing because of their scalability, but in the next few years, we will all find out what works best for different problems!

Research areas

Related content

GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
IL, Tel Aviv
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making. Key job responsibilities PhD, or Master's degree and 4+ years of CS, CE, ML or related field experience 3+ years of building models for business application experience Experience in patents or publications at top-tier peer-reviewed conferences or journals Experience programming in Java, C++, Python or related language Experience in any of the following areas: algorithms and data structures, parsing, numerical optimization, data mining, parallel and distributed computing, high-performance computing
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.