nFlux team photo
nFlux team members (left to right) Aditya Mukewar, Chenlei Zhang, Karthik Ramkumar, Adam Phillips, Falisha Kanji, Seyed Sajjadi*, Anton Safarevich*,  Natan Vargas,  Pulin Agrawal, Collin Miller*,  Danny Pena* (* indicates co-founder).
Credit: nFlux

3 questions with Seyed Sajjadi: How to utilize a video analytics platform to automate the process of learning

Sajjadi, a co-founder and CEO of Alexa Fund company nFlux.ai, explains how procedure monitoring can help humans, from astronauts to manufacturers, and even home cooks.

Editor’s Note: This interview is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. In 2019, the Alexa Fund first invested in nflux.ai, and then in 2020 participated in the company’s seed round.

In 2018, Seyed Sajjadi was pursuing a master’s degree in computer science at the University of Southern California (USC) when he decided to drop out and found nFlux.ai. While pursuing his master’s degree, he also was working as a project manager at the Systems Engineering Research Laboratory (SERL) research laboratory at California State University in Northridge, Calif.

At the University of Southern California, Seyed Sajjadi focused on the development of Sigma, a cognitive architecture and system. One outcome of the research was this paper, which Sajjadi coauthored with computer science professor Paul Rosenbloom and other USC collaborators.

At USC, Sajjadi was working as a member of the Cognitive/Virtual Human Architecture lab under computer science professor Paul Rosenbloom. There, he focused on the development of Sigma, a cognitive architecture and system that strives to combine what has been learned from four decades of independent work on symbolic cognitive architectures, probabilistic graphic models, and more recently neural models. One outcome of his research there was a paper, “Controlling Synthetic Characters in Simulation: A Case for Cognitive Architectures and Sigma”, which Sajjadi coauthored with Rosenbloom and other USC collaborators. The paper was accepted to the 2018 Interservice/Industry Training Simulation and Education Conference (I/ITSEC).

At SERL, Sajjadi led an interdisciplinary team of more than 90 engineers and human factors researchers focused on building the next generation of robotic search-and-rescue systems with artificial intelligence. It was here that Sajjadi and colleagues began thinking about forming nflux.ai, inspired, he says, by the fictional character J.A.R.V.I.S. (Just A Rather Very Intelligent System) from the Marvel Cinematic Universe film franchise, and a vision for how artificial intelligence systems can augment humans in positive ways.

Amazon Science asked Sajjadi three questions about the challenges of developing cognitive architectures, nFlux’s focus on imitation learning within the manufacturing sector, and how the company’s technology could eventually be relevant to Alexa customers at home.

Q. What is a video analytics platform, and how does it enable what you call procedure monitoring?

nFlux is the first intelligent video analytics platform that automates the process of learning and generating contextual insights from the unstructured data inside video footage. One of our goals is to pass a Turing test for video comprehension. Imagine there is a woman sitting at a desk looking at a video on her computer. We want to develop a video comprehension system that can answer any question about that video with the same level of comprehension as the woman.

Our first customer was NASA, and right now we’re working to build a system similar to HAL 9000, the fictional AI character in the Space Odyssey series. HAL 9000 is a general AI system that can mimic the way humans think, behave, and take actions. Ironically, Space Odyssey is centered around a deep-space mission. Today, if astronauts have a question, they call Houston, and someone at Johnson Space Center answers their questions. But as we embark on deep space missions, such as Mars, where there is a 40-minute delay in communication, that method of communication isn’t practical. So we want to provide an intelligent system on the spacecraft that can understand what the astronauts are doing and assist them by augmenting what they’re capable of doing on their own.

Seyed Sajjidi
Seyed Sajjadi

That’s what we refer to as procedure monitoring, which is the core of the innovation we’re developing. Our objective is imitation learning, or learning by demonstration. If an astronaut is performing a procedure, our objective is to capture that procedure via video with a minimum number of examples, say 10 or 15, which in machine learning is a tiny sample size. But from that small sample size we develop a computational model so that if another astronaut has to perform that same procedure in the future, we can track that. If in performing that procedure the astronaut deviates from the procedure, perhaps by missing a screw, our system can recognize that in real time and alert the astronaut.

That’s really the core of what we consider procedure monitoring, or the astronaut-assistant technology we’ve been developing. One of the keys to our video analytics platform is its ability to learn from a minimum number of videos. That’s significant.

But for those algorithms to infer from a small set of data, they are extracting basic signals from our base models.   This is possible since the agent can be augmented with prior semantic knowledge of key activities, such as tethering, drilling components, etc., and can recognize key components — objects, tools — of each step from synthetically generated data. This technique is inspired by the way humans ingest information as they watch a new procedure they have never seen before. We are capable of recognizing the key activity being performed even if we have not previously seen the objects/tools being used, and can deduce the steps required to successfully complete a procedure.

Q. How is nFlux technology being applied within the manufacturing sector?

Despite the perception that robots have taken over the manufacturing floor, seventy-two percent of manufacturing work is still done by humans. Six million people here in the United States go to work every day to perform a certain set of procedures. As that person on the manufacturing floor is doing her job, we can capture any deviations in real time.

Our system can be a virtual teacher or instructor helping train a new employee, or an existing employee who’s learning a new procedure. This is extremely valuable to manufacturers because it reduces production cycles. If they can train employees faster at their manufacturing facilities that translates into millions of dollars in manufacturing time. It also impacts the quality of their products. The better a manufacturer’s employees are trained, and the more standardized their procedures, the lower their defect rates. Those are two critical elements to any manufacturer.

Our technology also helps in capturing what we refer to as tribal knowledge.  In many complicated manufacturing environments, training can’t be provided on a piece of paper, instead you need a computational model derived from video of how the procedure is conducted properly. That computational model can help train new employees as they come on board, monitor their work to ensure they’re following procedures properly, and act as that intelligent assistant for your manufacturing workforce. nFlux isn’t designed to replace the workforce, it’s there to augment the work they’re doing. Ultimately, this reduces the amount of rework required to output high-quality products from that manufacturing plant

Q. The Alexa Fund is an investor. So how could your computational model be relevant to Alexa customers?

Echo Show stationed on a kitchen counter.
Imagine, says Sajjadi, that as you were cooking the Echo Show 10 was watching you and could alert you if you missed an ingredient. That, he says, would be an example of taking procuedure monitoring from the shop floor to the kitchen.

An Echo Show with a screen was first introduced in 2017, and since there have been subsequent generations, including the new Echo Show 10, which first became available earlier this year. These devices support multimodal experiences, providing Alexa greater context and an understanding with vision. These multimodal Echo devices tend to be in the kitchen and one of the most popular uses is for cooking, and following cooking instructions in real time. Imagine if as you were cooking the Echo Show 10 was watching you cook and alerted you if you missed adding an ingredient. That would be an example of taking procedure monitoring from the shop floor to the kitchen. 

Earlier this year, we were awarded another NASA contract to support the health of astronauts. This work is relevant to other Alexa healthcare-related scenarios. If you’re an elderly person living at home or within an assisted living facility, what if an nFlux application noticed that you didn’t take your pills at 9 a.m. as you are supposed to, and alerted you. Or what if you’re under your doctor’s orders to walk for five minutes every two hours. We could recognize that you haven’t been mobile in the past couple of hours, and remind you to walk. These are the kinds of consumer-facing scenarios that complement our commercial approach to procedure monitoring, and could be applied in the home. 

Research areas

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team