nFlux team photo
nFlux team members (left to right) Aditya Mukewar, Chenlei Zhang, Karthik Ramkumar, Adam Phillips, Falisha Kanji, Seyed Sajjadi*, Anton Safarevich*,  Natan Vargas,  Pulin Agrawal, Collin Miller*,  Danny Pena* (* indicates co-founder).
Credit: nFlux

3 questions with Seyed Sajjadi: How to utilize a video analytics platform to automate the process of learning

Sajjadi, a co-founder and CEO of Alexa Fund company nFlux.ai, explains how procedure monitoring can help humans, from astronauts to manufacturers, and even home cooks.

Editor’s Note: This interview is the latest installment within a series Amazon Science is publishing related to the science behind products and services from companies in which Amazon has invested. In 2019, the Alexa Fund first invested in nflux.ai, and then in 2020 participated in the company’s seed round.

In 2018, Seyed Sajjadi was pursuing a master’s degree in computer science at the University of Southern California (USC) when he decided to drop out and found nFlux.ai. While pursuing his master’s degree, he also was working as a project manager at the Systems Engineering Research Laboratory (SERL) research laboratory at California State University in Northridge, Calif.

At the University of Southern California, Seyed Sajjadi focused on the development of Sigma, a cognitive architecture and system. One outcome of the research was this paper, which Sajjadi coauthored with computer science professor Paul Rosenbloom and other USC collaborators.

At USC, Sajjadi was working as a member of the Cognitive/Virtual Human Architecture lab under computer science professor Paul Rosenbloom. There, he focused on the development of Sigma, a cognitive architecture and system that strives to combine what has been learned from four decades of independent work on symbolic cognitive architectures, probabilistic graphic models, and more recently neural models. One outcome of his research there was a paper, “Controlling Synthetic Characters in Simulation: A Case for Cognitive Architectures and Sigma”, which Sajjadi coauthored with Rosenbloom and other USC collaborators. The paper was accepted to the 2018 Interservice/Industry Training Simulation and Education Conference (I/ITSEC).

At SERL, Sajjadi led an interdisciplinary team of more than 90 engineers and human factors researchers focused on building the next generation of robotic search-and-rescue systems with artificial intelligence. It was here that Sajjadi and colleagues began thinking about forming nflux.ai, inspired, he says, by the fictional character J.A.R.V.I.S. (Just A Rather Very Intelligent System) from the Marvel Cinematic Universe film franchise, and a vision for how artificial intelligence systems can augment humans in positive ways.

Amazon Science asked Sajjadi three questions about the challenges of developing cognitive architectures, nFlux’s focus on imitation learning within the manufacturing sector, and how the company’s technology could eventually be relevant to Alexa customers at home.

Q. What is a video analytics platform, and how does it enable what you call procedure monitoring?

nFlux is the first intelligent video analytics platform that automates the process of learning and generating contextual insights from the unstructured data inside video footage. One of our goals is to pass a Turing test for video comprehension. Imagine there is a woman sitting at a desk looking at a video on her computer. We want to develop a video comprehension system that can answer any question about that video with the same level of comprehension as the woman.

Our first customer was NASA, and right now we’re working to build a system similar to HAL 9000, the fictional AI character in the Space Odyssey series. HAL 9000 is a general AI system that can mimic the way humans think, behave, and take actions. Ironically, Space Odyssey is centered around a deep-space mission. Today, if astronauts have a question, they call Houston, and someone at Johnson Space Center answers their questions. But as we embark on deep space missions, such as Mars, where there is a 40-minute delay in communication, that method of communication isn’t practical. So we want to provide an intelligent system on the spacecraft that can understand what the astronauts are doing and assist them by augmenting what they’re capable of doing on their own.

Seyed Sajjidi
Seyed Sajjadi

That’s what we refer to as procedure monitoring, which is the core of the innovation we’re developing. Our objective is imitation learning, or learning by demonstration. If an astronaut is performing a procedure, our objective is to capture that procedure via video with a minimum number of examples, say 10 or 15, which in machine learning is a tiny sample size. But from that small sample size we develop a computational model so that if another astronaut has to perform that same procedure in the future, we can track that. If in performing that procedure the astronaut deviates from the procedure, perhaps by missing a screw, our system can recognize that in real time and alert the astronaut.

That’s really the core of what we consider procedure monitoring, or the astronaut-assistant technology we’ve been developing. One of the keys to our video analytics platform is its ability to learn from a minimum number of videos. That’s significant.

But for those algorithms to infer from a small set of data, they are extracting basic signals from our base models.   This is possible since the agent can be augmented with prior semantic knowledge of key activities, such as tethering, drilling components, etc., and can recognize key components — objects, tools — of each step from synthetically generated data. This technique is inspired by the way humans ingest information as they watch a new procedure they have never seen before. We are capable of recognizing the key activity being performed even if we have not previously seen the objects/tools being used, and can deduce the steps required to successfully complete a procedure.

Q. How is nFlux technology being applied within the manufacturing sector?

Despite the perception that robots have taken over the manufacturing floor, seventy-two percent of manufacturing work is still done by humans. Six million people here in the United States go to work every day to perform a certain set of procedures. As that person on the manufacturing floor is doing her job, we can capture any deviations in real time.

Our system can be a virtual teacher or instructor helping train a new employee, or an existing employee who’s learning a new procedure. This is extremely valuable to manufacturers because it reduces production cycles. If they can train employees faster at their manufacturing facilities that translates into millions of dollars in manufacturing time. It also impacts the quality of their products. The better a manufacturer’s employees are trained, and the more standardized their procedures, the lower their defect rates. Those are two critical elements to any manufacturer.

Our technology also helps in capturing what we refer to as tribal knowledge.  In many complicated manufacturing environments, training can’t be provided on a piece of paper, instead you need a computational model derived from video of how the procedure is conducted properly. That computational model can help train new employees as they come on board, monitor their work to ensure they’re following procedures properly, and act as that intelligent assistant for your manufacturing workforce. nFlux isn’t designed to replace the workforce, it’s there to augment the work they’re doing. Ultimately, this reduces the amount of rework required to output high-quality products from that manufacturing plant

Q. The Alexa Fund is an investor. So how could your computational model be relevant to Alexa customers?

Echo Show stationed on a kitchen counter.
Imagine, says Sajjadi, that as you were cooking the Echo Show 10 was watching you and could alert you if you missed an ingredient. That, he says, would be an example of taking procuedure monitoring from the shop floor to the kitchen.

An Echo Show with a screen was first introduced in 2017, and since there have been subsequent generations, including the new Echo Show 10, which first became available earlier this year. These devices support multimodal experiences, providing Alexa greater context and an understanding with vision. These multimodal Echo devices tend to be in the kitchen and one of the most popular uses is for cooking, and following cooking instructions in real time. Imagine if as you were cooking the Echo Show 10 was watching you cook and alerted you if you missed adding an ingredient. That would be an example of taking procedure monitoring from the shop floor to the kitchen. 

Earlier this year, we were awarded another NASA contract to support the health of astronauts. This work is relevant to other Alexa healthcare-related scenarios. If you’re an elderly person living at home or within an assisted living facility, what if an nFlux application noticed that you didn’t take your pills at 9 a.m. as you are supposed to, and alerted you. Or what if you’re under your doctor’s orders to walk for five minutes every two hours. We could recognize that you haven’t been mobile in the past couple of hours, and remind you to walk. These are the kinds of consumer-facing scenarios that complement our commercial approach to procedure monitoring, and could be applied in the home. 

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.