Card-Imbens 16x9.jpg
David Card (left), an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, and Guido Imbens (right), an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business.

A conversation with economics Nobelists

Amazon Scholar David Card and academic research consultant Guido Imbens on the past and future of empirical economics.

The annual meeting of the American Economic Association (AEA) took place Jan. 7 - 9, and as it approached, Amazon Science had the chance to interview two of the three recipients of the 2021 Nobel Prize in economics — who also happen to be Amazon-affiliated economists.

David Card, an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, won half the prize “for his empirical contributions to labor economics”.

Guido Imbens, an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business, shared the other half of the prize with MIT’s Josh Angrist for “methodological contributions to the analysis of causal relationships”.

Amazon Science: The empirical approach to economics has been recognized by the Nobel Prize committee several times in the last few years, but it wasn't always as popular as it is today. I'm curious how you both first became interested in empirical approaches to economics.

David Card: The heroes of economics for many, many decades were the theorists, and in the postwar era especially, there was a recognition that economic modeling was underdeveloped — the math was underdeveloped — and there was a need to formalize things and understand better what the models really delivered.

People started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy.
David Card

That need really proceeded through the ’60s, and Arrow and Debreu were these famous mathematical economists who developed some very elegant theoretical models of how the market works in an idealized economy.

What happened in my time was people started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy. Arrow-Debreu is basically mathematical philosophy.

Guido Imbens: I came from a very different tradition. I grew up in the Netherlands, and there was a strong tradition of econometrics started by people like Tinbergen. Tinbergen had been very broad — he did econometrics, but he also did empirical work and was very heavily involved in policy analysis. But over time, the program he had started was becoming much more focused on technical econometrics.

So as an undergraduate, we didn't really do any empirical work. We really just did a lot of mathematical statistics and some operations research and some economic theory. My thesis was a theoretical econometrics study.

When I presented that at Harvard, Josh Angrist wasn't really all that impressed with it, and he actually opposed the department hiring me there because he thought the paper was boring. And he was probably right! But luckily, the more senior people there at the time thought I was at least somewhat promising. And so I got hired at Harvard. But then it was really Josh and Larry Katz, one of the labor economists there, who got me interested in going to the labor seminar and got me exposed to the modern empirical work.

The context Josh and I started talking in really was this paper that I think came up in all three of the Nobel lectures, this paper by Ed Leamer, “Let's Take the Con Out of Econometrics”, where Leamer says, “Hardly anyone takes data analysis seriously. Or perhaps more accurately, hardly anyone takes anyone else’s data analysis seriously.”

And I think Leamer was right: people did these very elaborate things, and it was all showing off complicated technical things, but it wasn't really very credible. In fact, Leamer presented a lecture based on that work at Harvard. And I remember Josh getting up at some point and saying, “Well, you talk about all this old stuff, but look at the work Card does. Look at the work Krueger does. Look at the work I do. It's very different.”

And that felt right to me. It felt that the work was qualitatively very different from the work that Ed Leamer was describing and that he was complaining about.

AS: So that's when you first became aware of Professor Card’s work. Professor Card, when did you first become aware of Professor Imbens’s work?

Card: One of his early papers was pretty interesting. He was trying to combine data from micro survey evidence with benchmark numbers that you would get from a population, and it's actually a version of a kind of a problem that arises at Amazon all the time, which is, we've got noisy estimates of something, and we've got probably reliable estimates of some other aggregates, and there's often ways to try and combine those. I saw that and I thought that was very interesting.

Then there’s the problem that Josh and Guido worked on that was most impactful and that was cited by the Nobel Prize committee. I had worked on an experiment, a real experiment [as opposed to a natural experiment], in welfare analysis in Canada, and it was providing an economic incentive to try and get single mothers off of welfare and into work. And we noticed that the group of mothers who complied or followed on with the experiment was reasonable size, but it wasn't 100%.

We did some analysis of it trying to characterize them. Around the same time, I became aware of Imbens’s and Angrist’s paper, which basically formalized that a lot better and described what exactly was going on with this group. That framework just instantly took off, and everyone within a few years was thinking about problems that way.

This morning I was talking to another Amazon person about a problem. It was a difference analysis. I was saying we should try and characterize the compliers for this difference intervention. So it's exactly this problem.

The Nobel committee’s press release for Card, Imbens, and Angrist’s prize announcement emphasizes their use of natural experiments, which it defines as “situations in which chance events or policy changes result in groups of people being treated differently, in a way that resembles clinical trials in medicine.” A seminal instance of this was Card’s 1993 paper with his Princeton colleague Alan Krueger, which compared fast-food restaurants in two demographically similar communities on either side of the New Jersey-Pennsylvania border, one of which had recently seen a minimum-wage hike and one of which hadn’t.

AS: In the early days, there was skepticism about the empirical approach to economics. So every time you selected a new research project, you weren't just trying to answer an economics problem; you were also, in a sense, establishing the credibility of the approach. How did you select problems then? Was there a structure that you recognized as possibly lending itself to natural experiment?

Card: I think that the natural-experiment thing — there was really a brief period where that was novel, to tell you the truth. Maybe 1989 to 1992 or 3. I did this paper on the Mariel boatlift, which was cited by the committee. But to tell you the truth, that was a very modest paper. I never presented it anywhere, and it's in a very modest journal. So I never thought of that paper as going anywhere [laughs].

What happened was, it became more and more well understood that in order to make a claim of causality even from a natural-experiment setting, you had to have a fair amount of information from before the experiment took place to validate or verify that the group that you were calling the treatment group and the group that you were calling the control group actually were behaving the same.

That was a weakness of the project that Alan Krueger and I did. We had restaurants in New Jersey and Pennsylvania. We knew the minimum wage was going to increase — or we thought we knew that; it wasn't entirely clear at the time — but we surveyed the restaurants before, and then the minimum wage went up, and we surveyed them after, and that was good.

But we didn't really have multiple surveys from before to show that in the absence of the minimum wage, New Jersey and Pennsylvania restaurants had tracked each other for a long time. And these days, that's better understood. At Amazon for instance, people are doing intervention analyses of this type. They would normally look at what they call pre-trend analysis, make sure that the treatment group and the control group are trending the same beforehand.

I think there are 1,000 questions in economics that have been open forever. Sometimes new datasets come along. That's been happening a lot in labor economics: huge administrative datasets have become available, richer and richer, and now we're getting datasets that are created by these tech firms. So my usual thing is, I think, that's a dataset that maybe we can answer this old question on. That’s more my approach.

That's why being at Amazon has been great .... A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies.
Guido Imbens

Imbens: I come from a slightly different perspective. Most of my work has come from listening to people like David and Josh and seeing what type of problems they're working on, what type of methods they're using, and seeing if there's something to be added there — if there’s some way of improving the methods or places where maybe they're stuck, but listening to the people actually doing the empirical work rather than starting with the substantive questions.

That's why being at Amazon has been great, from my perspective. A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies. It's been a very fertile environment for me to come up with new research.

AS: Methodologically, what are some of the outstanding questions that interest you both?

Imbens: Well, one of the things is experimental design in complex environments. A lot of the experimental designs we’re using at the moment still come fairly directly from biomedical settings. We have a population, we randomize them into a treatment group and a control group, and then we compare outcomes for the two groups.

But in a lot of the settings we’re interested in at Amazon, there are very complex interactions between the units and their experiences, and dealing with that is very challenging. There are lots of special cases where we know somewhat what to do, but there are lots of cases where we don't know exactly what to do, and we need to do more complex experiments to get the answers to the questions we're interested in.

Double randomization — original color scheme.jpeg
An example of what Imbens calls “experimental design in complex environments”. In this illustration, each of five viewers is shown promotions for eight different Prime Video shows. Some of those promotions contain extra information, indicated in the image by star ratings (the “treatment”). This design helps determine whether the treatment affects viewing habits (the viewer experiment) but also helps identify spillover effects, in which participation in the viewer experiment influences the viewer’s behavior in other contexts.

The second thing is, we do a lot of these experiments, but often the experiments are relatively small. They’re small in duration, and they’re small in size relative to the overall population. You know, it goes back to the paper we mentioned before, combining this observational-study data with experimental data. That raises a lot of interesting methodological challenges that I spend a lot of time thinking about these days.

AS: I wondered if in the same way that in that early paper you were looking at survey data and population data, there's a way that natural experiments and economic field experiments can reinforce each other or give you a more reliable signal than you can get from either alone.

Card: There's one thing that people do; I've done a few of these myself. It's called meta analysis. It's a technique where you take results from different studies and try and put them into a statistical model. In a way it's comparable to work Guido has done at Amazon, where you take a series of actual experiments, A/B experiments done in Weblab, and basically combine them and say, “Okay, these aren't exactly the same products and the same conditions, but there's enough comparability that maybe I can build a model and use the information from the whole set to help inform what we're learning from any given one.”

And you can do that in studies in economics. For example, I’ve done one on training programs. There are many of these training programs. Each of them — exactly as Guido was saying — is often quite small. And there are weird conditions: sometimes it's only young males or young females that are in the experiment, or they don't have very long follow-up, or sometimes the labor market is really strong, and other times it's really weak. So you can try and build a model of the outcome you get from any given study and then try and see if there are any systematic patterns there.

Imbens: We do all these experiments, but often we kind of do them once, and then we put them aside. There's a lot of information over the years built up in all these experiments we've done, and finding more of these meta-analysis-type ways of combining them and exploiting all the information we have collected there — I think it's a very promising way to go.

AS: How can empirical methods complement theoretical approaches — model building of the kind that, in some sense, the early empirical research was reacting against?

Card: Normally, if you're building a model, there are a few key parameters, like you need to get some kind of an elasticity of what a customer will do if faced with a higher price or if offered a shorter, faster delivery speed versus slower delivery speed. And if you have those elasticities, then you can start building up a model.

If you have even a fairly complicated dynamic model, normally there's a relatively small number of these parameters, and the value of the model is to take this set of parameters and try and tell a bit richer story — not just how the customer responds to an offer of a faster delivery today but how that affects their future purchases and whether they come back and buy other products or whatever. But you need credible estimates of those elasticities. It's not helpful to build a model and then just pull numbers out of the air [laughs]. And that's why A/B experiments are so important at Amazon.

AS: I asked about outstanding methodological questions that you're interested in, but how about economic questions more broadly that you think could really benefit from an empirical approach?

Card: In my field [labor economics], we've begun to realize that different firms are setting different wages for the same kinds of workers. And we're starting to think about two issues related to that. One is, how do workers choose between jobs? Do they know about all the jobs out there? Do they just find out about some of the jobs? We're trying to figure out exactly why it's okay in the labor market for there to be multiple wages for a certain class of workers. Why don't all the workers immediately try to go to one job? This seems to be a very important phenomenon.

And on the other side of that, how do employers think about it? What are the benefits to employers of a higher wage or lower wage? Is it just the recruiting, or is it retention, or is it productivity? Is it longer-term goals? That's front and center in the research that I do outside of Amazon.

AS: I was curious if there were any cases where a problem presented itself, and at first you didn't think there was any way to get an empirical handle on it, and then you figured out that there was.

We're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. ... That's different than this old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire.
David Card

Card: I saw a really interesting paper that was done by a PhD student who was visiting my center at Berkeley. In European football, there are a lot of non-white players, and fan racism is pretty pervasive. This guy noticed that during COVID, they played a lot of games with no fans. So he was able to compare the performance of the non-white and white players in the pre-COVID era and the COVID era, with and without fans, and showed that the non-white players did a little bit better. That's the kind of question where you’re saying, How are we ever going to study that? But if you're thinking and looking around, there's always some angle that might be useful.

Imbens: That's a very clever idea. I agree with David. If you just pay attention, there are a lot of things happening that allow you to answer important questions. Maybe fan insults in sports itself isn't that big a deal, but clearly, racism in the labor market and having people treated differently is a big problem. And here you get a very clear handle on an aspect of it. And once you show it's a problem there, it's very likely that it shows up in arguably substantively much more important settings where it's really hard to study.

In the Netherlands for a long time, they had a limit on the number of students who could go to medical school. And it wasn't decided by the medical schools themselves; they couldn't choose whom to admit. It was partly based on a lottery. At some point, someone used that to figure out how much access to medical school is actually worth. So essentially, you have two people who are both qualified to go to medical school; one gets lucky in the lottery; one doesn't. And it turns out you're giving the person who wins the lottery basically a lot of money. Obviously, in many professions we can't just randomly assign people to different types of jobs. But here you get a handle on the value of rationing that type of education.

Card: I think that's really important. You know, we're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. In a way, that's different than this sort of old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire. That is a difference, I think.

Research areas

Related content

US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, WA, Seattle
As a Data Scientist you will be working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities - Work hands-on with complex, noisy datasets to derive actionable insights and explain/debug black-box models using interpretability and data-attribution methods. - Design and analyze experiments and observational studies with rigorous statistical inference, including confidence intervals, power/sample-size estimation, variance reduction, and appropriate hypothesis testing. - Benchmark models and datasets using classical and modern techniques; select ML methods based on data and operational constraints, and evaluate using robust metrics and diagnostic analyses. - Apply production-grade measurement and MLOps practices, including data quality monitoring, drift/shift detection, and A/B test design and readouts with disciplined diagnosis of metric movement. - Deliver end-to-end analyses that improve team execution and decision-making—define goal-driving metrics with stakeholders, build clear reporting (tables, dashboards, and visualizations), and communicate results that translate into concrete actions. - Investigate anomalies and data integrity issues across diverse data sources using structured root-cause analysis, correlation diagnostics, significance testing, and simulation across high- and low-fidelity datasets. - Partner closely with cross-functional domain experts to design experiments and interpret results, applying modern statistical methods to evaluate predictive and generative models as well as operational and process performance. - Develop production-quality analytics and modeling code—write well-tested, maintainable SQL/Python scripts and analysis workflows that can be promoted into production pipelines, and continuously adopt new statistical methods and best practices as the field evolves. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through novel generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace ecosystem. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an applied scientist on our team, you will * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build recommendation systems that leverage generative models to develop and improve campaigns. * You invent and design new solutions for scientifically-complex problem areas and/or opportunities in new business initiatives. * You drive or heavily influence the design of scientifically-complex software solutions or systems, for which you personally write significant parts of the critical scientific novelty. You take ownership of these components, providing a system-wide view and design guidance. These systems or solutions can be brand new or evolve from existing ones. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses; * Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Translate complex scientific challenges into clear and impactful solutions for business stakeholders. * Mentor and guide junior scientists, fostering a collaborative and high-performing team culture. * Stay up-to-date with advancements and the latest modeling techniques in the field About the team We are on a mission to make Amazon the best in class destination for shoppers to discover, engage, and purchase relevant products, from brands that are relevant to them. In this role, you will design and implement Gen AI solutions that help millions of advertisers create more effective ad campaigns with intelligent recommendations, while improving the overall experience at Amazon's global scale. Our team invents, defines, and delivers advertising products that drive brand discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon Store businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, fast-paced, and collaborative team with an entrepreneurial spirit.