Card-Imbens 16x9.jpg
David Card (left), an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, and Guido Imbens (right), an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business.

A conversation with economics Nobelists

Amazon Scholar David Card and academic research consultant Guido Imbens on the past and future of empirical economics.

The annual meeting of the American Economic Association (AEA) took place Jan. 7 - 9, and as it approached, Amazon Science had the chance to interview two of the three recipients of the 2021 Nobel Prize in economics — who also happen to be Amazon-affiliated economists.

David Card, an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, won half the prize “for his empirical contributions to labor economics”.

Guido Imbens, an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business, shared the other half of the prize with MIT’s Josh Angrist for “methodological contributions to the analysis of causal relationships”.

Amazon Science: The empirical approach to economics has been recognized by the Nobel Prize committee several times in the last few years, but it wasn't always as popular as it is today. I'm curious how you both first became interested in empirical approaches to economics.

David Card: The heroes of economics for many, many decades were the theorists, and in the postwar era especially, there was a recognition that economic modeling was underdeveloped — the math was underdeveloped — and there was a need to formalize things and understand better what the models really delivered.

People started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy.
David Card

That need really proceeded through the ’60s, and Arrow and Debreu were these famous mathematical economists who developed some very elegant theoretical models of how the market works in an idealized economy.

What happened in my time was people started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy. Arrow-Debreu is basically mathematical philosophy.

Guido Imbens: I came from a very different tradition. I grew up in the Netherlands, and there was a strong tradition of econometrics started by people like Tinbergen. Tinbergen had been very broad — he did econometrics, but he also did empirical work and was very heavily involved in policy analysis. But over time, the program he had started was becoming much more focused on technical econometrics.

So as an undergraduate, we didn't really do any empirical work. We really just did a lot of mathematical statistics and some operations research and some economic theory. My thesis was a theoretical econometrics study.

When I presented that at Harvard, Josh Angrist wasn't really all that impressed with it, and he actually opposed the department hiring me there because he thought the paper was boring. And he was probably right! But luckily, the more senior people there at the time thought I was at least somewhat promising. And so I got hired at Harvard. But then it was really Josh and Larry Katz, one of the labor economists there, who got me interested in going to the labor seminar and got me exposed to the modern empirical work.

The context Josh and I started talking in really was this paper that I think came up in all three of the Nobel lectures, this paper by Ed Leamer, “Let's Take the Con Out of Econometrics”, where Leamer says, “Hardly anyone takes data analysis seriously. Or perhaps more accurately, hardly anyone takes anyone else’s data analysis seriously.”

And I think Leamer was right: people did these very elaborate things, and it was all showing off complicated technical things, but it wasn't really very credible. In fact, Leamer presented a lecture based on that work at Harvard. And I remember Josh getting up at some point and saying, “Well, you talk about all this old stuff, but look at the work Card does. Look at the work Krueger does. Look at the work I do. It's very different.”

And that felt right to me. It felt that the work was qualitatively very different from the work that Ed Leamer was describing and that he was complaining about.

AS: So that's when you first became aware of Professor Card’s work. Professor Card, when did you first become aware of Professor Imbens’s work?

Card: One of his early papers was pretty interesting. He was trying to combine data from micro survey evidence with benchmark numbers that you would get from a population, and it's actually a version of a kind of a problem that arises at Amazon all the time, which is, we've got noisy estimates of something, and we've got probably reliable estimates of some other aggregates, and there's often ways to try and combine those. I saw that and I thought that was very interesting.

Then there’s the problem that Josh and Guido worked on that was most impactful and that was cited by the Nobel Prize committee. I had worked on an experiment, a real experiment [as opposed to a natural experiment], in welfare analysis in Canada, and it was providing an economic incentive to try and get single mothers off of welfare and into work. And we noticed that the group of mothers who complied or followed on with the experiment was reasonable size, but it wasn't 100%.

We did some analysis of it trying to characterize them. Around the same time, I became aware of Imbens’s and Angrist’s paper, which basically formalized that a lot better and described what exactly was going on with this group. That framework just instantly took off, and everyone within a few years was thinking about problems that way.

This morning I was talking to another Amazon person about a problem. It was a difference analysis. I was saying we should try and characterize the compliers for this difference intervention. So it's exactly this problem.

The Nobel committee’s press release for Card, Imbens, and Angrist’s prize announcement emphasizes their use of natural experiments, which it defines as “situations in which chance events or policy changes result in groups of people being treated differently, in a way that resembles clinical trials in medicine.” A seminal instance of this was Card’s 1993 paper with his Princeton colleague Alan Krueger, which compared fast-food restaurants in two demographically similar communities on either side of the New Jersey-Pennsylvania border, one of which had recently seen a minimum-wage hike and one of which hadn’t.

AS: In the early days, there was skepticism about the empirical approach to economics. So every time you selected a new research project, you weren't just trying to answer an economics problem; you were also, in a sense, establishing the credibility of the approach. How did you select problems then? Was there a structure that you recognized as possibly lending itself to natural experiment?

Card: I think that the natural-experiment thing — there was really a brief period where that was novel, to tell you the truth. Maybe 1989 to 1992 or 3. I did this paper on the Mariel boatlift, which was cited by the committee. But to tell you the truth, that was a very modest paper. I never presented it anywhere, and it's in a very modest journal. So I never thought of that paper as going anywhere [laughs].

What happened was, it became more and more well understood that in order to make a claim of causality even from a natural-experiment setting, you had to have a fair amount of information from before the experiment took place to validate or verify that the group that you were calling the treatment group and the group that you were calling the control group actually were behaving the same.

That was a weakness of the project that Alan Krueger and I did. We had restaurants in New Jersey and Pennsylvania. We knew the minimum wage was going to increase — or we thought we knew that; it wasn't entirely clear at the time — but we surveyed the restaurants before, and then the minimum wage went up, and we surveyed them after, and that was good.

But we didn't really have multiple surveys from before to show that in the absence of the minimum wage, New Jersey and Pennsylvania restaurants had tracked each other for a long time. And these days, that's better understood. At Amazon for instance, people are doing intervention analyses of this type. They would normally look at what they call pre-trend analysis, make sure that the treatment group and the control group are trending the same beforehand.

I think there are 1,000 questions in economics that have been open forever. Sometimes new datasets come along. That's been happening a lot in labor economics: huge administrative datasets have become available, richer and richer, and now we're getting datasets that are created by these tech firms. So my usual thing is, I think, that's a dataset that maybe we can answer this old question on. That’s more my approach.

That's why being at Amazon has been great .... A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies.
Guido Imbens

Imbens: I come from a slightly different perspective. Most of my work has come from listening to people like David and Josh and seeing what type of problems they're working on, what type of methods they're using, and seeing if there's something to be added there — if there’s some way of improving the methods or places where maybe they're stuck, but listening to the people actually doing the empirical work rather than starting with the substantive questions.

That's why being at Amazon has been great, from my perspective. A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies. It's been a very fertile environment for me to come up with new research.

AS: Methodologically, what are some of the outstanding questions that interest you both?

Imbens: Well, one of the things is experimental design in complex environments. A lot of the experimental designs we’re using at the moment still come fairly directly from biomedical settings. We have a population, we randomize them into a treatment group and a control group, and then we compare outcomes for the two groups.

But in a lot of the settings we’re interested in at Amazon, there are very complex interactions between the units and their experiences, and dealing with that is very challenging. There are lots of special cases where we know somewhat what to do, but there are lots of cases where we don't know exactly what to do, and we need to do more complex experiments to get the answers to the questions we're interested in.

Double randomization — original color scheme.jpeg
An example of what Imbens calls “experimental design in complex environments”. In this illustration, each of five viewers is shown promotions for eight different Prime Video shows. Some of those promotions contain extra information, indicated in the image by star ratings (the “treatment”). This design helps determine whether the treatment affects viewing habits (the viewer experiment) but also helps identify spillover effects, in which participation in the viewer experiment influences the viewer’s behavior in other contexts.

The second thing is, we do a lot of these experiments, but often the experiments are relatively small. They’re small in duration, and they’re small in size relative to the overall population. You know, it goes back to the paper we mentioned before, combining this observational-study data with experimental data. That raises a lot of interesting methodological challenges that I spend a lot of time thinking about these days.

AS: I wondered if in the same way that in that early paper you were looking at survey data and population data, there's a way that natural experiments and economic field experiments can reinforce each other or give you a more reliable signal than you can get from either alone.

Card: There's one thing that people do; I've done a few of these myself. It's called meta analysis. It's a technique where you take results from different studies and try and put them into a statistical model. In a way it's comparable to work Guido has done at Amazon, where you take a series of actual experiments, A/B experiments done in Weblab, and basically combine them and say, “Okay, these aren't exactly the same products and the same conditions, but there's enough comparability that maybe I can build a model and use the information from the whole set to help inform what we're learning from any given one.”

And you can do that in studies in economics. For example, I’ve done one on training programs. There are many of these training programs. Each of them — exactly as Guido was saying — is often quite small. And there are weird conditions: sometimes it's only young males or young females that are in the experiment, or they don't have very long follow-up, or sometimes the labor market is really strong, and other times it's really weak. So you can try and build a model of the outcome you get from any given study and then try and see if there are any systematic patterns there.

Imbens: We do all these experiments, but often we kind of do them once, and then we put them aside. There's a lot of information over the years built up in all these experiments we've done, and finding more of these meta-analysis-type ways of combining them and exploiting all the information we have collected there — I think it's a very promising way to go.

AS: How can empirical methods complement theoretical approaches — model building of the kind that, in some sense, the early empirical research was reacting against?

Card: Normally, if you're building a model, there are a few key parameters, like you need to get some kind of an elasticity of what a customer will do if faced with a higher price or if offered a shorter, faster delivery speed versus slower delivery speed. And if you have those elasticities, then you can start building up a model.

If you have even a fairly complicated dynamic model, normally there's a relatively small number of these parameters, and the value of the model is to take this set of parameters and try and tell a bit richer story — not just how the customer responds to an offer of a faster delivery today but how that affects their future purchases and whether they come back and buy other products or whatever. But you need credible estimates of those elasticities. It's not helpful to build a model and then just pull numbers out of the air [laughs]. And that's why A/B experiments are so important at Amazon.

AS: I asked about outstanding methodological questions that you're interested in, but how about economic questions more broadly that you think could really benefit from an empirical approach?

Card: In my field [labor economics], we've begun to realize that different firms are setting different wages for the same kinds of workers. And we're starting to think about two issues related to that. One is, how do workers choose between jobs? Do they know about all the jobs out there? Do they just find out about some of the jobs? We're trying to figure out exactly why it's okay in the labor market for there to be multiple wages for a certain class of workers. Why don't all the workers immediately try to go to one job? This seems to be a very important phenomenon.

And on the other side of that, how do employers think about it? What are the benefits to employers of a higher wage or lower wage? Is it just the recruiting, or is it retention, or is it productivity? Is it longer-term goals? That's front and center in the research that I do outside of Amazon.

AS: I was curious if there were any cases where a problem presented itself, and at first you didn't think there was any way to get an empirical handle on it, and then you figured out that there was.

We're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. ... That's different than this old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire.
David Card

Card: I saw a really interesting paper that was done by a PhD student who was visiting my center at Berkeley. In European football, there are a lot of non-white players, and fan racism is pretty pervasive. This guy noticed that during COVID, they played a lot of games with no fans. So he was able to compare the performance of the non-white and white players in the pre-COVID era and the COVID era, with and without fans, and showed that the non-white players did a little bit better. That's the kind of question where you’re saying, How are we ever going to study that? But if you're thinking and looking around, there's always some angle that might be useful.

Imbens: That's a very clever idea. I agree with David. If you just pay attention, there are a lot of things happening that allow you to answer important questions. Maybe fan insults in sports itself isn't that big a deal, but clearly, racism in the labor market and having people treated differently is a big problem. And here you get a very clear handle on an aspect of it. And once you show it's a problem there, it's very likely that it shows up in arguably substantively much more important settings where it's really hard to study.

In the Netherlands for a long time, they had a limit on the number of students who could go to medical school. And it wasn't decided by the medical schools themselves; they couldn't choose whom to admit. It was partly based on a lottery. At some point, someone used that to figure out how much access to medical school is actually worth. So essentially, you have two people who are both qualified to go to medical school; one gets lucky in the lottery; one doesn't. And it turns out you're giving the person who wins the lottery basically a lot of money. Obviously, in many professions we can't just randomly assign people to different types of jobs. But here you get a handle on the value of rationing that type of education.

Card: I think that's really important. You know, we're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. In a way, that's different than this sort of old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire. That is a difference, I think.

Research areas

Related content

IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Quantum Research Scientist in the Fabrication group. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of device fabrication techniques. Candidates with a track record of original scientific contributions will be preferred. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As a research scientist you will be expected to work on new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities In this role, you will drive improvements in qubit performance by characterizing the impact of environmental and material noise on qubit dynamics. This will require designing experiments to assess the role of specific noise sources, ensuring the collection of statistically significant data through automation, analyzing the results, and preparing clear summaries for the team. Finally, you will work with hardware engineers, material scientists, and circuit designers to implement changes which mitigate the impact of the most significant noise sources. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, VA, Herndon
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. AWS Infrastructure Services Science (AISS) researches and builds machine learning models that influence the power utilization at our data centers to ensure the health of our thermal and electrical infrastructure at high infrastructure utilization. As a Data Scientist, you will work on our Science team and partner closely with other scientists and data engineers as well as Business Intelligence, Technical Program Management, and Software teams to accurately model and optimize our power infrastructure. Outputs from your models will directly influence our data center topology and will drive exceptional cost savings. You will be responsible for building data science prototypes that optimize our power and thermal infrastructure, working across AWS to solve data mapping and quality issues (e.g. predicting when we might have bad sensor readings), and contribute to our Science team vision. You are skeptical. When someone gives you a data source, you pepper them with questions about sampling biases, accuracy, and coverage. When you’re told a model can make assumptions, you actively try to break those assumptions. You have passion for excellence. The wrong choice of data could cost the business dearly. You maintain rigorous standards and take ownership of the outcome of your data pipelines and code. You do whatever it takes to add value. You don’t care whether you’re building complex ML models, writing blazing fast code, integrating multiple disparate data-sets, or creating baseline models - you care passionately about stakeholders and know that as a curator of data insight you can unlock massive cost savings and preserve customer availability. You have a limitless curiosity. You constantly ask questions about the technologies and approaches we are taking and are constantly learning about industry best practices you can bring to our team. You have excellent business and communication skills to be able to work with product owners to understand key business questions and earn the trust of senior leaders. You will need to learn Data Center architecture and components of electrical engineering to build your models. You are comfortable juggling competing priorities and handling ambiguity. You thrive in an agile and fast-paced environment on highly visible projects and initiatives. The tradeoffs of cost savings and customer availability are constantly up for debate among senior leadership - you will help drive this conversation. Key job responsibilities - Proactively seek to identify opportunities and insights through analysis and provide solutions to automate and optimize power utilization based on a broad and deep knowledge of AWS data center systems and infrastructure. - Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult customer or business problems and cases in which the solution approach is unclear. - Collaborate with Engineering teams to obtain useful data by accessing data sources and building the necessary SQL/ETL queries or scripts. - Build models and automated tools using statistical modeling, econometric modeling, network modeling, machine learning algorithms and neural networks. - Validate these models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. - Collaborate with Engineering teams to implement these models in a manner which complies with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. About the team Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Why AWS* Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. *Diverse Experiences* Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. *Work/Life Balance* We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. *Inclusive Team Culture* Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) conferences, inspire us to never stop embracing our uniqueness. *Mentorship and Career Growth* We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Research Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the intersection of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, VA, Arlington
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team seeks an experienced Principal Data Scientist to join our ProServe Shared Delivery Team (SDT). In this role, you will serve as a technical leader and strategic advisor to AWS enterprise customers, partners, and internal AWS teams on transformative AI/ML projects. You will leverage your deep technical expertise to architect and implement innovative machine learning and generative AI solutions that drive significant business outcomes. As a Principal Data Scientist, you will lead complex, high-impact AI/ML initiatives across multiple customer engagements. You will collaborate with Director and C-level executives to translate business challenges into technical solutions. You will drive innovation through thought leadership, establish technical standards, and develop reusable solution frameworks that accelerate customer adoption of AWS AI/ML services. Your work will directly influence the strategic direction of AWS Professional Services AI/ML offerings and delivery approaches. Your extensive experience in designing and implementing sophisticated AI/ML solutions will enable you to tackle the most challenging customer problems. You will provide technical mentorship to other data scientists, establish best practices, and represent AWS as a subject matter expert in customer-facing engagements. You will build trusted advisor relationships with customers and partners, helping them achieve their business outcomes through innovative applications of AWS AI/ML services. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities Architecting and implementing complex, enterprise-scale AI/ML solutions that solve critical customer business challenges Providing technical leadership across multiple customer engagements, establishing best practices and driving innovation Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to design and deploy AI/ML solutions Developing reusable solution frameworks, reference architectures, and technical assets that accelerate customer adoption of AWS AI/ML services Representing AWS as a subject matter expert in customer-facing engagements, including executive briefings and technical workshops Identifying and driving new business opportunities through technical innovation and thought leadership Mentoring junior data scientists and contributing to the growth of AI/ML capabilities within AWS Professional Services
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, CA, Palo Alto
Sponsored Products and Brands (SPB) is at the heart of Amazon Advertising, helping millions of advertisers—from small businesses to global brands—connect with customers at the moments that matter most. Our advertising solutions enable sellers, vendors, and brand owners to grow their businesses by reaching shoppers with relevant, engaging ads across Amazon's store and beyond. We're obsessed with delivering measurable results for advertisers while creating a delightful shopping experience for customers. Are you interested in defining the science behind the future of advertising? Sponsored Products and Brands science teams are pioneering breakthrough agentic AI systems—pushing the boundaries of large language models, autonomous reasoning, planning, and decision-making to build intelligent agents that fundamentally transform how advertisers succeed on Amazon. As an SPB applied science leader, you'll have end-to-end ownership of the product and scientific vision, research agenda, model architectures, and evaluation frameworks required to deliver state-of-the-art agentic AI solutions for our advertising customers. You'll get to work on problems that are fast-paced, scientifically rich, and deeply consequential. You'll also be able to explore novel research directions, take bold bets, and collaborate with remarkable scientists, engineers, and product leaders. We'll look for you to bring your diverse perspectives, deep technical expertise, and scientific rigor to make Amazon Advertising even better for our advertisers and customers. With global opportunities for talented scientists and science leaders, you can decide where a career in Amazon Ads Science takes you! We are kicking off a new initiative within SPB to leverage agentic AI solutions to revolutionize how advertisers create, manage, and optimize their advertising campaigns. This is a unique opportunity to lead a business-critical applied science initiative from its inception—defining the scientific charter, establishing foundational research pillars, and building a multi-year science roadmap for transformative impact. As the single-threaded applied science leader, you will build and guide a dedicated team of applied scientists, research scientists, and machine learning engineers, working closely with cross-functional engineering and product partners, to research, develop, and deploy agentic AI systems that fundamentally reimagine the advertiser journey. Your charter will begin with advancing the science behind intelligent agents that simplify campaign creation, automate optimization decisions through autonomous reasoning and planning, and deliver personalized advertising strategies at scale. You will pioneer novel approaches in areas such as LLM-based agent architectures, multi-step planning and tool use, retrieval-augmented generation, reinforcement learning from human and business feedback, and robust evaluation methodologies for agentic systems. You will expand to proactively identify and tackle the next generation of AI-powered advertising experiences across the entire SPB portfolio. This high-visibility role places you as the science leader driving our strategy to democratize advertising success—making it effortless for advertisers of all sizes to achieve their business goals while delivering relevant experiences for Amazon customers. Key job responsibilities Build, mentor, and lead a new, high-performing applied science organization of applied scientists, research scientists, and engineers, fostering a culture of scientific excellence, innovation, customer obsession, and ownership. Define, own, and drive the long-term scientific and product vision and research strategy for agentic AI-powered advertising experiences across Sponsored Products and Brands—identifying the highest-impact research problems and charting a path from exploration to production. Lead the research, design, and development of novel agentic AI models and systems—including LLM-based agent architectures, multi-agent orchestration, planning and reasoning frameworks, tool-use mechanisms, and retrieval-augmented generation pipelines—that deliver measurable value for advertisers and create delightful, intuitive experiences. Establish rigorous scientific methodology and evaluation frameworks for assessing agent performance, reliability, safety, and advertiser outcomes, setting a high bar for experimentation, reproducibility, and offline-to-online consistency. Partner closely with senior business, engineering, and product leaders across Amazon Advertising to translate advertiser pain points and business opportunities into well-defined science problems, and deliver cohesive, production-ready solutions that drive advertiser success. Drive execution from research to production at scale, ensuring models and agentic systems meet high standards for quality, robustness, latency, safety, and reliability for mission-critical advertising services operating at Amazon scale. Champion a culture of scientific inquiry and technical depth that encourages bold experimentation, publication of novel research, relentless simplification, and continuous improvement. Communicate your team's scientific vision, research breakthroughs, strategy, and progress to senior leadership and key stakeholders, ensuring alignment with broader Amazon Advertising objectives and contributing to Amazon's position at the forefront of applied AI. Develop a science roadmap directly tied to advertiser outcomes, revenue growth, and business plans, delivering on commitments for high-impact research and modeling initiatives that shape the future of AI-powered digital advertising.