"This technology will be transformative in ways we can barely comprehend"

A judge and some of the finalists from the Alexa Prize Grand Challenge 3 talk about the competition, the role of COVID-19, and the future of socialbots.

Human beings are social creatures, and conversations are what connect us—they enable us to share everything from the prosaic to the profound with the people that matter to us. Living through an era marked by pandemic-induced isolation means many of those conversations have shifted online, but the connection they provide remains essential.

So what happens when you replace one of the human participants in a conversation with a socialbot? What does it mean to have an engaging conversation with an AI assistant? How can that kind of conversation prove to be valuable, and can it provide its own kind of connection?

Application period for next Alexa Prize challenge opens

The Amazon Alexa Prize team encourages all interested teams to apply for the Grand Challenge 4 by 11:59 p.m. PST on October 6, 2020.

The participants in this year’s Alexa Prize contest are driven by those questions. Amazon recently announced that a team from Emory University has won the 2020 Alexa Prize. We talked to that team, along with a judge from this year’s competition, as well as representatives from the other finalist teams at Czech Technical University, Stanford University, University of California, Davis, and University of California, Santa Cruz. We wanted to learn what drives them to participate, how COVID-19 has influenced their work and what they see as the possibilities and challenges for socialbots moving forward.

Winners of the Alexa Prize SocialBot Grand Challenge 3 discuss their research

Q: What inspired you to participate in this year’s competition?

Sarah Fillwock, team leader, Emora, Emory University: We had a group of students who were interested in dialogue system research, some of whom had actually participated in the Alexa Prize in its previous years, and we all knew that the Alexa Prize offers a really unique opportunity for anyone interested in this type of work. It is really exciting to use the Alexa device platform to launch a socialbot, because we are able to get hundreds of conversations a day between our socialbot and human users, which really allows for quick turnaround time when assessing whether or not our hypotheses and strategies are improving the performance of our dialogue system.

Marilyn Walker, faculty advisor, Athena, University of California, Santa Cruz: In our Natural Language and Dialogue Systems lab, our main research focus is dialogue management and language generation. Conversational AI is a very challenging problem, and we felt like we could have a research impact in this area. The field has been developing extremely quickly recently, and the Alexa Prize offers an opportunity to try out cutting-edge technologies in dialogue management and language generation on a large Alexa user population.

Amazon Alexa Prize Finalists 2020
The five Alexa Prize finalist teams: Czech Technical University in Prague; Emory University; Stanford University; the University of California, Davis; and the University of California, Santa Cruz.

Vrindavan (Davan) Harrison, team leader, Athena, UCSC: As academics, our primary focus is on research. This year’s competition aimed at being more research-oriented, allowing the teams to spend more time on developing new ideas.

Kai-Hui Liang, team lead, Gunrock, University of California, Davis: Our experience in last year’s competition motivated us to join again as we realized there is still a large room for improvement. I’m especially interested in how to find topics that engage users the most, including trying different ways to elicit and reason about users’ interests. How can we retrieve content that is relevant and interesting, and make the dialog flow more naturally?

Jan Pichl, team leader, Alquist, Czech Technical University: Since the first year of the Alexa Prize competition, we have been developing Alquist to deliver a wide range of topics with a closer focus on the most popular ones. The first Alquist guided a user through the conversation quite strictly. We learned quickly that we needed to introduce more flexibility and let the user be "in charge". With that in mind, we have been pushing Alquist in that direction. Moreover, we want Alquist to manage dialogue utilizing the knowledge graph, and suggest relevant information based on the previously discussed topics and entities.

Christopher D. Manning, faculty advisor, Chirpy Cardinal, Stanford University: It was our first time doing the Alexa Prize, and the team really hadn’t done advance preparation, so it’s all been a wild ride—by which I mean a lot of work and stress for everyone on the team. But it was super exciting that we were largely able to catch up with other leading teams who have been doing the competition for several years.

Hugh Howey, judge and science fiction author: Artificial intelligence is a passionate interest of mine. As a science fiction author, I have the freedom to write about most anything, but the one topic I keep coming back to is the impact that thinking machines already have on our lives and how that impact will only expand in the future. So any chance to be involved with those doing work and research in the field is a no-brainer for me. I leapt at the chance like a Boston Dynamics dog.

Q: What excites you about the potential of socialbots?

Hugh Howey (Judge): This technology will be transformative in ways we can barely comprehend. Right now, the human/computer interface is a bottleneck. It takes a long time for us to tell our computers what we want them to do, and they'll generally only do that thing the one time and forget what it learned. In the future, more and more of the trivial will be automated. This will free up human capital to tackle larger problems. It will also bring us together by removing language barriers, by helping those with disabilities, and eventually this technology will be available to anyone who needs it.

Jinho D. Choi, faculty advisor, Emory: It has been reported that more than 44 million adults in US have mental health issues such as anxiety or depression. We believe that developing an innovative socialbot that comforts people can really help those with mental health conditions, who are generally afraid of talking to other human beings. You may wonder how artificial intelligence can convey a human emotion such as caring. However, humans have used their own creations, such as arts and music, to comfort themselves. It is our vision to advance AI, the greatest invention of humankind, to help individuals learn more about their inner selves so they can feel more positive about themselves, and have a bigger impact in the world.

Ashwin Paranjape, co-team leader, Stanford: As socialbots become more sophisticated and prevalent, increasing numbers of people are chatting with them regularly. As the name suggests, socialbots have the potential to fulfill social needs, such as chit-chatting about everyday life, or providing support to a person struggling with mental health difficulties. Furthermore, socialbots could become a primary user interface through which we engage with the world—for example, chatting about the news, or discussing a book.

Sarah Fillwock, Emory: Our experience in this competition has really solidified this idea of the potential of socialbots being value to people who need support and are in troubling situations. I think that the most compelling role for socialbots in global challenges is to provide a supportive environment to allow people to express themselves, and explore their feelings with regard to whatever dramatic event is going on. This is especially important for vulnerable populations, such as those who do not have a strong social circle or have reduced social contact with others, prohibiting them from being able to achieve the feeling of being valued and understood.

Q: What are the main challenges to realizing that potential?

Abigail See, co-team leader, Stanford: Currently, socialbots struggle to make sense of long, involved conversations, and this limits their ability to talk about any topic in depth. To do this better, socialbots will need to understand what a particular user wants—not only in terms of discussion topics, but also what kind of conversation they want to have. Another important challenge is to allow users to take more initiative, and drive the conversation themselves. Currently, socialbots tend to take more initiative, to ensure the conversation stays within their capabilities. If we can make our socialbots more flexible, they will be much more useful and engaging to people.

Sarah Fillwock, Emory: One major challenge facing the field of dialogue system research is establishing a best practice for evaluation of the performance of dialogue approaches. There is currently a diverse set of evaluation strategies that the research community uses to determine how well their new dialogue approach performs. Another challenge is that dialogues are more than just a pattern-matching problem. Having a back-and-forth dialogue on any topic with another agent tends to involve planning towards achieving specific goals during the conversation as new information about your speaking partner is revealed. Dialogues also rely a lot on having a foundation of general world knowledge that you use to fully understand the implications of what the other person is saying.

Amazon releases Topical Chat dataset

The text-based collection of more than 235,000 utterances will help support high-quality, repeatable research in the field of dialogue systems.

Marilyn Walker, UCSC: There’s a shortage of large annotated conversational corpora for the task of open-domain conversation. For example, progress in NLU has been supported by large annotated corpora, such as Penn Treebank, however, there are currently no such publicly available corpora for open-domain conversation. Also, a rich model of individual users would enable much more natural conversations, but privacy issues currently make it difficult to build such models.

Hugh Howey (Judge): The challenge will be for our ethics and morality to keep up with our gizmos. We will be far more powerful in the future. I only hope we'll be more responsible as well.

Q: What role has the COVID-19 pandemic played in your work?

Jurik Juraska, team member, UCSC: The most immediate effect the onset of the pandemic had on our socialbot was, of course, that it could not just ignore this new dynamic situation. Our socialbot had to acknowledge this new development, as that was what most people were talking about at that point. We would thus have Athena bring up the topic at the beginning of the conversation, sympathizing with the users' current situation, but avoiding wallowing in the negative aspects of it. In the feedback that some users left, there were a number of expressions of gratitude for the ability to have a fun interaction with a socialbot at a time when direct social interaction with friends and family was greatly restricted.

Kai-Hui Liang, UC Davis: We noticed an evident difference in the way Alexa users reacted to popular topics. For example, before COVID-19, many users gave engaging responses when discussing their favorite sports to watch, their travel experiences, or events they plan to do over the weekend. After the breakout of COVID-19, more users replied saying there’s no sports game to watch or they are not able to travel. Therefore, we adapted our topics to better fit the situation. We added discussion about their life experience during the quarantine (eg. how their diet has changed or if they walk outside daily to stay healthy). We also observed more users having negative feelings potentially due to the quarantine. For instance, some users said they feel lonely and they miss their friends or family. Therefore, we enhanced our comforting module that expresses empathy through active listening.

Abigail See, Stanford: As the pandemic unfolded, we saw in real time how users changed their expectations of our socialbot. Not only did they want our bot to deliver up-to-date information, they also wanted it to show emotional understanding for the situation they were in.

Sarah Fillwock, Emory: When COVID became a significant societal issue, we tried two things: we had an experience-oriented COVID topic where our bot discussed with people how they felt about COVID in a sympathetic and reassuring atmosphere, and we had a fact-oriented COVID topic that gave objective information. What we observed was that people had a much stronger positive reaction to the experience-oriented COVID-19 approach than the fact-oriented COVID-19 approach, and seemed to prefer it when talking. This really gave us some empirical evidence that social agents have a strong potential to be helpful in times of turmoil by giving people a safe and caring space to talk about these major events in their life since people responded positively to our approach at doing this.

Q: Lastly, are there any particular advancements in the fields of NLU, dialogue management, conversational AI, etc., that you find promising?

Jan Pichl, Czech Technical University: It is exciting to see the capabilities of the Transformer-based models these days. They are able to generate large articles or even whole stories that are coherent. However, they demand a lot of computation power during the training phase and even during the runtime. Additionally, it is still challenging to use them in a socialbot when you need to work with constantly changing information about the world.

Abigail See, Stanford: As NLP researchers, we are amazed by the incredible pace of progress in the field. Since the last Alexa Prize in 2018, there have been game-changing advancements, particularly in the use of large pretrained language models to understand and generate language. The Alexa Prize offers a unique opportunity for us to apply these techniques, which so far have mostly been tested only on neat, well-defined tasks, and put them in front of real people, with all the messiness that entails! In particular, we were excited to explore the possibility of using neural generative models to chat with people. As recently as the 2018 Alexa Prize, these models generally performed poorly, and so were not used by any of the finalist teams. However, this year, these systems became an important backbone of our system.

Sarah Fillwock, Emory: The work people have been putting into incorporating common sense knowledge and common sense reasoning into dialogue systems is one of the most interesting directions of the current conversational AI field. A lot of the common sense knowledge we use is not explicitly detailed in any type of data set as people have learned them through physical experience or inference over time, so there isn’t necessarily any convenient way to currently accomplish this goal. There have been a lot of attempts to see how far a language modeling approach to dialogue agents can go, but even using huge dialogue data sets and highly complex models still results in hit-and-miss success at common sense information. I am really looking forward to the dialogue approaches and dialogue resources that more explicitly try to model this type of common sense knowledge.

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, NJ, Newark
Employer: Audible, Inc. Title: Data Scientist II Location: 1 Washington Street, Newark, NJ 07102 Duties: Independently own, design, and implement scalable and reliable solutions to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the approach is unclear. Acquire data by building the necessary SQL/ETL queries. Import processes through various company specific interfaces for accessing RedShift, and S3/edX storage systems. Deliver artifacts on medium size projects that affect important business decisions. Build relationships with stakeholders and counterparts, and communicate model outputs, observations, and key performance indicators (KPIs) to the management to develop sustainable and consumable products and product features. Explore and analyze data by inspecting univariate distributions and multivariate interactions, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build production-ready models using statistical modeling, mathematical modeling, econometric modeling, machine learning algorithms, network modeling, social network modeling, natural language processing, large language models and/or genetic algorithms. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production. Position reports to Newark, NJ office; however, telecommuting from a home office may be allowed. Requirements: Requires a Master’s degree in Statistics, Computer Science, Computer Engineering, Data Science, Machine Learning, Applied Math, Operations Research, or a related field plus two (2) years of experience as a Data Scientist or other occupation involving data processing and predictive Machine Learning modeling at scale. Experience may be gained concurrently and must include: Two (2) years in each of the following: - Utilizing specialized modelling software including Python or R - Building statistical models and machine learning models using large datasets from multiple resources - Building non-linear models including Neural Nets, Deep Learning, or Gradient Boosting. One (1) year in each of the following: - Building production-ready solutions or applications relying on Large Language Models (LLM), accessed programmatically and beyond just prompting - Evaluating LLM results at scale or fine-tuning LLMs - Building production-ready recommendation systems - Using database technologies including SQL or ETL. Alternatively, will accept a Bachelor’s degree and five (5) years of experience. Salary: $169,550 - 207,500 /year. Multiple positions. Apply online: www.amazon.jobs Job Code: ADBL175.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As a Senior Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a frontend engineer on the team, you will build the platform and tooling that power data creation, evaluation, and experimentation across the lab. Your work will be used daily by annotators, engineers, and researchers. This is a hands-on technical leadership role. You will ship a lot of code while defining frontend architecture, shared abstractions, and UI systems across the platform. We are looking for someone with strong engineering fundamentals, sound product judgment, and the ability to build polished UIs in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Define and evolve architecture for a research tooling platform with multiple independently evolving tools. - Design and implement reusable UI components, frontend infrastructure, and APIs. - Collaborate directly with Research, Human -Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through implementation, rollout, and long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense lab with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! -- About the team: We are a research engineering team responsible for data ingestion and research tooling that support model development across the lab. The lab’s ability to train state-of-the-art models depends on generating high-quality training data and having useful tools for understanding experimental outcomes. We accelerate research work across the lab while maintaining the operational reliability expected of critical infrastructure. -- About the role: As a backend engineer on the team, you will build and operate core services that ingest, process, and distribute large-scale, multi-modal datasets to internal tools and data pipelines across the lab. This is a hands-on technical leadership role. You will ship a lot of code while defining backend architecture and operational standards across the platform. The platform is built primarily in TypeScript today, with plans to introduce Python services in the future. We are looking for someone who can balance rapid experimentation with operational rigor to build reliable services in a fast-moving research environment. Key job responsibilities - Be highly productive in the codebase and drive the team’s engineering velocity. - Design and evolve backend architecture and interfaces for core services. - Define and own standards for production health, performance, and observability. - Collaborate directly with Research, Human Feedback, Product Engineering, and other teams to understand workflows and define requirements. - Write technical RFCs to communicate design decisions and tradeoffs across teams. - Own projects end to end, from technical design through long-term maintenance. - Raise the team’s technical bar through thoughtful code reviews, architectural guidance, and mentorship.
FR, Courbevoie
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Amazon's Pricing & Promotions Science is seeking a driven Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to regularly generate fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused applied researchers to join our Pricing and Promotions Optimization science group, with a charter to measure, refine, and launch customer-obsessed improvements to our algorithmic pricing and promotion models across all products listed on Amazon. This role requires an individual with exceptional machine learning and reinforcement learning modeling expertise, excellent cross-functional collaboration skills, business acumen, and an entrepreneurial spirit. We are looking for an experienced innovator, who is a self-starter, comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - See the big picture. Understand and influence the long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Successfully execute & deliver. Apply your exceptional technical machine learning expertise to incrementally move the needle on some of our hardest pricing problems. A day in the life We are hiring an applied scientist to drive our pricing optimization initiatives. The Price Optimization science team drives cross-domain and cross-system improvements through: - invent and deliver price optimization, simulation, and competitiveness tools for Sellers. - shape and extend our RL optimization platform - a pricing centric tool that automates the optimization of various system parameters and price inputs. - Promotion optimization initiatives exploring CX, discount amount, and cross-product optimization opportunities. - Identifying opportunities to optimally price across systems and contexts (marketplaces, request types, event periods) Price is a highly relevant input into many partner-team architectures, and is highly relevant to the customer, therefore this role creates the opportunity to drive extremely large impact (measured in Bs not Ms), but demands careful thought and clear communication. About the team About the team: the Pricing Discovery and Optimization team within P2 Science owns price quality, discovery and discount optimization initiatives, including criteria for internal price matching, price discovery into search, p13N and SP, pricing bandits, and Promotion type optimization. We leverage planet scale data on billions of Amazon and external competitor products to build advanced optimization models for pricing, elasticity estimation, product substitutability, and optimization. We preserve long term customer trust by ensuring Amazon's prices are always competitive and error free.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Pasadena
The Amazon Center for Quantum Computing (CQC) team is looking for a passionate, talented, and inventive Research Engineer specializing in hardware design for cryogenic environments. The ideal candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated experience driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must also have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities The CQC collaborates across teams and projects to offer state-of-the-art, cost-effective solutions for scaling the signal delivery to quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You will work on the following: - High density novel packaging solutions for quantum processor units - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies - Cryogenic mechanical design for signal delivery systems - Simulation-driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders - Work cross-functionally to help drive decisions using your unique technical background and skill set - Refine and define standards and processes for operational excellence - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly About the team The Amazon Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. Inclusive Team Culture Here at Amazon, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.
US, WA, Seattle
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities Key job responsibilities include: * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research