"This technology will be transformative in ways we can barely comprehend"

A judge and some of the finalists from the Alexa Prize Grand Challenge 3 talk about the competition, the role of COVID-19, and the future of socialbots.

Human beings are social creatures, and conversations are what connect us—they enable us to share everything from the prosaic to the profound with the people that matter to us. Living through an era marked by pandemic-induced isolation means many of those conversations have shifted online, but the connection they provide remains essential.

So what happens when you replace one of the human participants in a conversation with a socialbot? What does it mean to have an engaging conversation with an AI assistant? How can that kind of conversation prove to be valuable, and can it provide its own kind of connection?

Application period for next Alexa Prize challenge opens

The Amazon Alexa Prize team encourages all interested teams to apply for the Grand Challenge 4 by 11:59 p.m. PST on October 6, 2020.

The participants in this year’s Alexa Prize contest are driven by those questions. Amazon recently announced that a team from Emory University has won the 2020 Alexa Prize. We talked to that team, along with a judge from this year’s competition, as well as representatives from the other finalist teams at Czech Technical University, Stanford University, University of California, Davis, and University of California, Santa Cruz. We wanted to learn what drives them to participate, how COVID-19 has influenced their work and what they see as the possibilities and challenges for socialbots moving forward.

Winners of the Alexa Prize SocialBot Grand Challenge 3 discuss their research

Q: What inspired you to participate in this year’s competition?

Sarah Fillwock, team leader, Emora, Emory University: We had a group of students who were interested in dialogue system research, some of whom had actually participated in the Alexa Prize in its previous years, and we all knew that the Alexa Prize offers a really unique opportunity for anyone interested in this type of work. It is really exciting to use the Alexa device platform to launch a socialbot, because we are able to get hundreds of conversations a day between our socialbot and human users, which really allows for quick turnaround time when assessing whether or not our hypotheses and strategies are improving the performance of our dialogue system.

Marilyn Walker, faculty advisor, Athena, University of California, Santa Cruz: In our Natural Language and Dialogue Systems lab, our main research focus is dialogue management and language generation. Conversational AI is a very challenging problem, and we felt like we could have a research impact in this area. The field has been developing extremely quickly recently, and the Alexa Prize offers an opportunity to try out cutting-edge technologies in dialogue management and language generation on a large Alexa user population.

Amazon Alexa Prize Finalists 2020
The five Alexa Prize finalist teams: Czech Technical University in Prague; Emory University; Stanford University; the University of California, Davis; and the University of California, Santa Cruz.

Vrindavan (Davan) Harrison, team leader, Athena, UCSC: As academics, our primary focus is on research. This year’s competition aimed at being more research-oriented, allowing the teams to spend more time on developing new ideas.

Kai-Hui Liang, team lead, Gunrock, University of California, Davis: Our experience in last year’s competition motivated us to join again as we realized there is still a large room for improvement. I’m especially interested in how to find topics that engage users the most, including trying different ways to elicit and reason about users’ interests. How can we retrieve content that is relevant and interesting, and make the dialog flow more naturally?

Jan Pichl, team leader, Alquist, Czech Technical University: Since the first year of the Alexa Prize competition, we have been developing Alquist to deliver a wide range of topics with a closer focus on the most popular ones. The first Alquist guided a user through the conversation quite strictly. We learned quickly that we needed to introduce more flexibility and let the user be "in charge". With that in mind, we have been pushing Alquist in that direction. Moreover, we want Alquist to manage dialogue utilizing the knowledge graph, and suggest relevant information based on the previously discussed topics and entities.

Christopher D. Manning, faculty advisor, Chirpy Cardinal, Stanford University: It was our first time doing the Alexa Prize, and the team really hadn’t done advance preparation, so it’s all been a wild ride—by which I mean a lot of work and stress for everyone on the team. But it was super exciting that we were largely able to catch up with other leading teams who have been doing the competition for several years.

Hugh Howey, judge and science fiction author: Artificial intelligence is a passionate interest of mine. As a science fiction author, I have the freedom to write about most anything, but the one topic I keep coming back to is the impact that thinking machines already have on our lives and how that impact will only expand in the future. So any chance to be involved with those doing work and research in the field is a no-brainer for me. I leapt at the chance like a Boston Dynamics dog.

Q: What excites you about the potential of socialbots?

Hugh Howey (Judge): This technology will be transformative in ways we can barely comprehend. Right now, the human/computer interface is a bottleneck. It takes a long time for us to tell our computers what we want them to do, and they'll generally only do that thing the one time and forget what it learned. In the future, more and more of the trivial will be automated. This will free up human capital to tackle larger problems. It will also bring us together by removing language barriers, by helping those with disabilities, and eventually this technology will be available to anyone who needs it.

Jinho D. Choi, faculty advisor, Emory: It has been reported that more than 44 million adults in US have mental health issues such as anxiety or depression. We believe that developing an innovative socialbot that comforts people can really help those with mental health conditions, who are generally afraid of talking to other human beings. You may wonder how artificial intelligence can convey a human emotion such as caring. However, humans have used their own creations, such as arts and music, to comfort themselves. It is our vision to advance AI, the greatest invention of humankind, to help individuals learn more about their inner selves so they can feel more positive about themselves, and have a bigger impact in the world.

Ashwin Paranjape, co-team leader, Stanford: As socialbots become more sophisticated and prevalent, increasing numbers of people are chatting with them regularly. As the name suggests, socialbots have the potential to fulfill social needs, such as chit-chatting about everyday life, or providing support to a person struggling with mental health difficulties. Furthermore, socialbots could become a primary user interface through which we engage with the world—for example, chatting about the news, or discussing a book.

Sarah Fillwock, Emory: Our experience in this competition has really solidified this idea of the potential of socialbots being value to people who need support and are in troubling situations. I think that the most compelling role for socialbots in global challenges is to provide a supportive environment to allow people to express themselves, and explore their feelings with regard to whatever dramatic event is going on. This is especially important for vulnerable populations, such as those who do not have a strong social circle or have reduced social contact with others, prohibiting them from being able to achieve the feeling of being valued and understood.

Q: What are the main challenges to realizing that potential?

Abigail See, co-team leader, Stanford: Currently, socialbots struggle to make sense of long, involved conversations, and this limits their ability to talk about any topic in depth. To do this better, socialbots will need to understand what a particular user wants—not only in terms of discussion topics, but also what kind of conversation they want to have. Another important challenge is to allow users to take more initiative, and drive the conversation themselves. Currently, socialbots tend to take more initiative, to ensure the conversation stays within their capabilities. If we can make our socialbots more flexible, they will be much more useful and engaging to people.

Sarah Fillwock, Emory: One major challenge facing the field of dialogue system research is establishing a best practice for evaluation of the performance of dialogue approaches. There is currently a diverse set of evaluation strategies that the research community uses to determine how well their new dialogue approach performs. Another challenge is that dialogues are more than just a pattern-matching problem. Having a back-and-forth dialogue on any topic with another agent tends to involve planning towards achieving specific goals during the conversation as new information about your speaking partner is revealed. Dialogues also rely a lot on having a foundation of general world knowledge that you use to fully understand the implications of what the other person is saying.

Amazon releases Topical Chat dataset

The text-based collection of more than 235,000 utterances will help support high-quality, repeatable research in the field of dialogue systems.

Marilyn Walker, UCSC: There’s a shortage of large annotated conversational corpora for the task of open-domain conversation. For example, progress in NLU has been supported by large annotated corpora, such as Penn Treebank, however, there are currently no such publicly available corpora for open-domain conversation. Also, a rich model of individual users would enable much more natural conversations, but privacy issues currently make it difficult to build such models.

Hugh Howey (Judge): The challenge will be for our ethics and morality to keep up with our gizmos. We will be far more powerful in the future. I only hope we'll be more responsible as well.

Q: What role has the COVID-19 pandemic played in your work?

Jurik Juraska, team member, UCSC: The most immediate effect the onset of the pandemic had on our socialbot was, of course, that it could not just ignore this new dynamic situation. Our socialbot had to acknowledge this new development, as that was what most people were talking about at that point. We would thus have Athena bring up the topic at the beginning of the conversation, sympathizing with the users' current situation, but avoiding wallowing in the negative aspects of it. In the feedback that some users left, there were a number of expressions of gratitude for the ability to have a fun interaction with a socialbot at a time when direct social interaction with friends and family was greatly restricted.

Kai-Hui Liang, UC Davis: We noticed an evident difference in the way Alexa users reacted to popular topics. For example, before COVID-19, many users gave engaging responses when discussing their favorite sports to watch, their travel experiences, or events they plan to do over the weekend. After the breakout of COVID-19, more users replied saying there’s no sports game to watch or they are not able to travel. Therefore, we adapted our topics to better fit the situation. We added discussion about their life experience during the quarantine (eg. how their diet has changed or if they walk outside daily to stay healthy). We also observed more users having negative feelings potentially due to the quarantine. For instance, some users said they feel lonely and they miss their friends or family. Therefore, we enhanced our comforting module that expresses empathy through active listening.

Abigail See, Stanford: As the pandemic unfolded, we saw in real time how users changed their expectations of our socialbot. Not only did they want our bot to deliver up-to-date information, they also wanted it to show emotional understanding for the situation they were in.

Sarah Fillwock, Emory: When COVID became a significant societal issue, we tried two things: we had an experience-oriented COVID topic where our bot discussed with people how they felt about COVID in a sympathetic and reassuring atmosphere, and we had a fact-oriented COVID topic that gave objective information. What we observed was that people had a much stronger positive reaction to the experience-oriented COVID-19 approach than the fact-oriented COVID-19 approach, and seemed to prefer it when talking. This really gave us some empirical evidence that social agents have a strong potential to be helpful in times of turmoil by giving people a safe and caring space to talk about these major events in their life since people responded positively to our approach at doing this.

Q: Lastly, are there any particular advancements in the fields of NLU, dialogue management, conversational AI, etc., that you find promising?

Jan Pichl, Czech Technical University: It is exciting to see the capabilities of the Transformer-based models these days. They are able to generate large articles or even whole stories that are coherent. However, they demand a lot of computation power during the training phase and even during the runtime. Additionally, it is still challenging to use them in a socialbot when you need to work with constantly changing information about the world.

Abigail See, Stanford: As NLP researchers, we are amazed by the incredible pace of progress in the field. Since the last Alexa Prize in 2018, there have been game-changing advancements, particularly in the use of large pretrained language models to understand and generate language. The Alexa Prize offers a unique opportunity for us to apply these techniques, which so far have mostly been tested only on neat, well-defined tasks, and put them in front of real people, with all the messiness that entails! In particular, we were excited to explore the possibility of using neural generative models to chat with people. As recently as the 2018 Alexa Prize, these models generally performed poorly, and so were not used by any of the finalist teams. However, this year, these systems became an important backbone of our system.

Sarah Fillwock, Emory: The work people have been putting into incorporating common sense knowledge and common sense reasoning into dialogue systems is one of the most interesting directions of the current conversational AI field. A lot of the common sense knowledge we use is not explicitly detailed in any type of data set as people have learned them through physical experience or inference over time, so there isn’t necessarily any convenient way to currently accomplish this goal. There have been a lot of attempts to see how far a language modeling approach to dialogue agents can go, but even using huge dialogue data sets and highly complex models still results in hit-and-miss success at common sense information. I am really looking forward to the dialogue approaches and dialogue resources that more explicitly try to model this type of common sense knowledge.

Research areas

Latest news

The latest updates, stories, and more about Alexa Prize.
US, MA, Westborough
Amazon is looking for talented Postdoctoral Scientists to join our Fulfillment Technology and Robotics team for a one-year, full-time research position. The Innovation Lab in BOS27 is a physical space in which new ideas can be explored, hands-on. The Lab provides easier access to tools and equipment our inventors need while also incubating critical technologies necessary for future robotic products. The Lab is intended to not only develop new technologies that can be used in future Fulfillment, Technology, and Robotics products but additionally promote deeper technical collaboration with universities from around the world. The Lab’s research efforts are focused on highly autonomous systems inclusive of robotic manipulation of packages and ASINs, multi-robot systems utilizing vertical space, Amazon integrated gantries, advancements in perception, and collaborative robotics. These five areas of research represent an impactful set of technical capabilities that when realized at a world class level will unlock our desire for a highly automated and adaptable fulfillment supply chain. As a Postdoctoral Scientist you will be developing a coordinated multi-agent system to achieve optimized trajectories under realistic constraints. The project will explore the utility of state-of-the-art methods to solve multi-agent, multi-objective optimization problems with stochastic time and location constraints. The project is motivated by a new technology being developed in the Innovation Lab to introduce efficiencies in the last-mile delivery systems. Key job responsibilities In this role you will: * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent new techniques in your area(s) of expertise.
IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, CA, Palo Alto
Amazon’s Advertising Technology team builds the technology infrastructure and ad serving systems to manage billions of advertising queries every day. The result is better quality advertising for publishers and more relevant ads for customers. In this organization you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), one of the world's leading companies. Amazon Publisher Services (APS) helps publishers of all sizes and on all channels better monetize their content through effective advertising. APS unites publishers with advertisers across devices and media channels. We work with Amazon teams across the globe to solve complex problems for our customers. The end results are Amazon products that let publishers focus on what they do best - publishing. The APS Publisher Products Engineering team is responsible for building cloud-based advertising technology services that help Web, Mobile, Streaming TV broadcasters and Audio publishers grow their business. The engineering team focuses on unlocking our ad tech on the most impactful Desktop, mobile and Connected TV devices in the home, bringing real-time capabilities to this medium for the first time. As a successful Data Scientist in our team, · You are an analytical problem solver who enjoys diving into data, is excited about investigations and algorithms, and can credibly interface between technical teams and business stakeholders. You will collaborate directly with product managers, BIEs and our data infra team. · You will analyze large amounts of business data, automate and scale the analysis, and develop metrics (e.g., user recognition, ROAS, Share of Wallet) that will enable us to continually measure the impact of our initiatives and refine the product strategy. · Your analytical abilities, business understanding, and technical aptitude will be used to identify specific and actionable opportunities to solve existing business problems and look around corners for future opportunities. Your expertise in synthesizing and communicating insights and recommendations to audiences of varying levels of technical sophistication will enable you to answer specific business questions and innovate for the future. · You will have direct exposure to senior leadership as we communicate results and provide scientific guidance to the business. Major responsibilities include: · Utilizing code (Apache, Spark, Python, R, Scala, etc.) for analyzing data and building statistical models to solve specific business problems. · Collaborate with product, BIEs, software developers, and business leaders to define product requirements and provide analytical support · Build customer-facing reporting to provide insights and metrics which track system performance · Influence the product strategy directly through your analytical insights · Communicating verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Bellevue
mmPROS Surface Research Science seeks an exceptional Applied Scientist with expertise in optimization and machine learning to optimize Amazon's middle mile transportation network, the backbone of its logistics operations. Amazon's middle mile transportation network utilizes a fleet of semi-trucks, trains, and airplanes to transport millions of packages and other freight between warehouses, vendor facilities, and customers, on time and at low cost. The Surface Research Science team delivers innovation, models, algorithms, and other scientific solutions to efficiently plan and operate the middle mile surface (truck and rail) transportation network. The team focuses on large-scale problems in vehicle route planning, capacity procurement, network design, forecasting, and equipment re-balancing. Your role will be to build innovative optimization and machine learning models to improve driver routing and procurement efficiency. Your models will impact business decisions worth billions of dollars and improve the delivery experience for millions of customers. You will operate as part of a team of innovative, experienced scientists working on optimization and machine learning. You will work in close collaboration with partners across product, engineering, business intelligence, and operations. Key job responsibilities - Design and develop optimization and machine learning models to inform our hardest planning decisions. - Implement models and algorithms in Amazon's production software. - Lead and partner with product, engineering, and operations teams to drive modeling and technical design for complex business problems. - Lead complex modeling and data analyses to aid management in making key business decisions and set new policies. - Write documentation for scientific and business audiences. About the team This role is part of mmPROS Surface Research Science. Our mission is to build the most efficient and optimal transportation network on the planet, using our science and technology as our biggest advantage. We leverage technologies in optimization, operations research, and machine learning to grow our businesses and solve Amazon's unique logistical challenges. Scientists in the team work in close collaboration with each other and with partners across product, software engineering, business intelligence, and operations. They regularly interact with software engineering teams and business leadership.
US, WA, Seattle
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success.. Come join the team that owns the technology behind AWS People Planning products, services, and metrics. We leverage technology to improve the experience of AWS Executives, HR/Recruiting/Finance leaders, and internal AWS planning partners. A Sr. Data Scientist in the AWS Workforce Planning team, will partner with Software Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
US, WA, Bellevue
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Senior Applied Scientist to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. An Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical expertise and a passion for developing science-driven solutions in a fast-paced environment. The ideal candidate will have a solid understanding of state of the art NLP, Generative AI, LLM fine-tuning, alignment, prompt engineering, benchmarking solutions, or CV and Multi-modal models, e.g., Vision Language Models (VLM), zero-shot, few-shot, and semi-supervised learning paradigms, with the ability to apply these technologies to diverse business challenges. You will leverage your deep technical knowledge, a strong foundation in machine learning and AI, and hands-on experience in building large-scale distributed systems to deliver reliable, scalable, and high-performance products. In addition to your technical expertise, you must have excellent communication skills and the ability to influence and collaborate effectively with key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Why this job is awesome? This is SUPER high-visibility work: Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. - Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? - Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? - Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? - Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation