Amazon and UCLA announce fellowship recipients

The Amazon Fellows fulfill the Science Hub for Humanity and Artificial Intelligence's mission of researching the societal impact of artificial intelligence

The Science Hub for Humanity and Artificial Intelligence, launched in October 2021 to facilitate collaboration between academic researchers and Amazon scientists, today announced the second cohort of Amazon Fellows. The fellowships are aimed at graduate students pursuing research into artificial intelligence and its impact on society.

Related content
The UCLA Science Hub seeks to address challenges to humanity through research using artificial intelligence, bringing together academic and industry scientists.

The fellowships provide PhD students at UCLA Samueli School of Engineering with up to two quarters of funding during the academic year to pursue independent research projects. The Amazon Fellows study within the departments of computer science, electrical and computer engineering, bioengineering, and mechanical and aerospace engineering. In addition to project funding, they will be invited to apply to intern at Amazon.

Top row, left to right, Sanae Amani Geshnigani, Kewei Cheng, Zi-Yi Dou, Kai Fukami, and Luzhe Huang; second row, left to right, Alexander Johnson, Tung Nguyen, Alexander Schperberg, and Zhouxing Shi; and bottom row, left to right, Zhaoqiang Wang, Yu Yang, Da Yin, and Zhe Zeng. The UCLA logo is on the bottom right.
The Science Hub for Humanity and Artificial Intelligence's second cohort of Amazon Fellows are: top row, left to right, Sanae Amani Geshnigani, Kewei Cheng, Zi-Yi Dou, Kai Fukami, and Luzhe Huang; second row, left to right, Alexander Johnson, Tung Nguyen, Alexander Schperberg, and Zhouxing Shi; and bottom row, left to right, Zhaoqiang Wang, Yu Yang, Da Yin, and Zhe Zeng.

What follows is the list of fellows, their areas of research, and their UCLA faculty advisors:

Sanae Amani Geshnigani is pursuing a PhD in electrical and computer engineering; her advisor is Lin Yang, assistant professor of electrical and computer engineering.

“My research goal is to expand the applicability of bandit and reinforcement learning algorithms to new application domains: specifically, safety-critical and distributed physical systems, such as robotics, wireless networks, the power grid and medical trials.”

Kewei Cheng, is pursuing a PhD in computer science; her advisor is Yizhou Sun, professor of computer science.

“My research interests mainly focus on knowledge graph reasoning with a specific concentration on neural-symbolic reasoning, and more generally in machine learning and network science.”

Zi-Yi Dou is pursuing a PhD in computer science; his advisor is Nanyun Peng, assistant professor of computer science.

“My research has been centered around advancing the field of artificial intelligence with an aim of helping people around the globe by allowing computers to interact with them through natural language and help them accomplish tasks. State-of-the-art models still struggle with gathering information from diverse modalities and languages, and generalizing well to novel scenarios. To overcome these limitations, my current research goal is to build robust multimodal and multilingual AI models and comprehensively evaluate them along multiple dimensions and domains.”

Related content
Models that map spoken language to objects in an image would make it easier for customers to communicate with multimodal devices.

Kai Fukami is pursuing a PhD in mechanical and aerospace engineering; his advisor is Kunihiko Taira, professor, computer science.

“My academic interest belongs to fluid dynamics which is a discipline to study flows around us such as air and water. In particular, I am working on the design of artificial-intelligent techniques and machine-learning methods to understand and control turbulent flows from limited sensor measurements.”

Luzhe Huang is pursuing a PhD in electrical and computer engineering; his advisor is Aydogan Ozcan, Chancellor's Professor and the Volgenau Chair for Engineering Innovation.

“In the past decade, AI has revolutionized many fields, including robotics, computer vision, and natural language processing, and greatly improved our daily life. When it comes to microscopy imaging, despite some researches exploring the integration of AI and microscopy imaging, critical challenges remain for real-world applications and prevent the advance of AI to benefit a broad group of users in biology, pathology and medical science. I am fortunate to be studying on this frontier of human’s knowledge and develop technologies to conquer these challenges using my interdisciplinary knowledge in both AI and optics.”

Alexander Johnson, is pursuing a PhD in electrical and computer engineering; his advisor is Abeer Alwan, professor of electrical and computer engineering.

“My research focuses on improving speech technology performance for children’s speech and African American English (AAE) speech in order to provide more equitable outcomes in early education. Speech technologies perform well for certain demographics (ie. able-bodied, adult, first-language speakers of mainstream dialects). However, they perform much worse for underrepresented groups (eg. young children, speakers of non-mainstream dialects, people with speech-related disabilities, etc.). Child speakers of AAE often show poorer reading and oral language performance than their white counterparts as a result of the orthographic mismatch between their spoken dialect and mainstream American English (MAE) taught in their classrooms. ASR systems trained to recognize AAE could give these students additional teaching support and help bridge this performance gap. However, this is a difficult low-resource problem given the small number of publicly available, labeled datasets for AAE speech in comparison to those for MAE speech. Thus, novel methods for low-resource dialects are needed in order to bring ASR systems for AAE-speaking children to the level of current data-driven ASR approaches for MAE.”

Tung Nguyen is pursuing a PhD in computer science; his advisor is Aditya Grover, assistant professor of computer science.

“Deep learning has grown rapidly in both scale and generalizability over the past decade. However, the majority of the real-world advances are made in the field of vision or language, while sequential decision-making paradigms such as reinforcement learning (RL) have lagged behind and only showed limited successes for controlled domains such as games. Sequential decision making in the real world is more challenging, because 1) the inputs are high-dimensional with long-range spatiotemporal dependencies; 2) agents need to quantify uncertainty to balance exploration and exploitation; and 3) active online interactions with the environment can be very expensive or even infeasible in high-stakes applications. My research goal is to address these challenges, and thereby enable robust sequential decision making for real-world applications. I outline my past research and future plans below.”

Alexander Schperberg is pursuing a PhD in mechanical and aerospace engineering; his advisor is Dennis Hong, professor of mechanical and aerospace engineering.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

“My goal is to facilitate the dream of one day seeing diverse sets of wheeled, aerial, legged, and underwater robots being used ubiquitously towards reducing the burdens of society. Robotics and AI technology have the enormous potential to support humanity by performing tasks too dangerous for human workers, or through human-robot interactions. Unfortunately, while the potential use of robotics is an exciting prospect, they are still not commonly used due to a justified concern for both their safety and cost. For example, to make robots safer typically demands high-fidelity sensor and computer components. Thus, these robots are very expensive and are still seen as a luxury item rather than a product for everyday use. More troubling is that those from economically challenged and/or underprivileged groups may not have access and potentially cannot reap the benefit from this technology. Ideally, creating new robots using off-the-shelve or inexpensive components would greatly expand the robotic field and rapidly benefit society for all.”

Zhouxing Shi is pursuing a PhD in computer science; his advisor is Cho-Jui Hsieh, associate professor of computer science.

“My research interest is trustworthy machine learning and responsible AI, and I am currently working on the formally verifiable robustness of machine learning models especially neural networks.”

Zhaoqiang Wang is pursuing a PhD in bioengineering; his advisor is Liang Gao, assistant professor of bioengineering.

“Cardiovascular diseases (CVDs) are the leading cause of death globally, taking an estimated 17.9 million lives each year. In the United States, it is reported that approximately 82.6 million people currently live with at least one type of CVD, which contributes to a significant healthcare burden. To elucidate the underlying mechanism, researchers replicate the cardiac disease model in well-established genetic systems such as mouse and zebrafish. These model animals possess the essential common physiology as humans, but intelligent microscopy is critically necessary to reveal their heart morphology and dynamics.”

Yu Yang is pursuing a PhD in computer science; her advisor is Baharan Mirzasoleiman, assistant professor of computer science.

“My research contributes to the foundations of large-scale machine learning. Learning from massive datasets is financially and environmentally expensive. Moreover, large real-world data are usually biased toward large sub-populations, and often contain noisy or malicious examples that harm the generalization performance of the trained models. To address these problems, my research primarily focuses on understanding and improving the training data or learning objectives for resource-efficient and accountable learning.”

Da Yin is pursuing a PhD in computer science; his advisor is Kai-Wei Chang, associate professor computer science.

“I propose to utilize external knowledge to promote the effectiveness and inclusivity of neural models. Specifically, the framework of building models enhanced with external knowledge is usually separated into three important stages: 1) understanding what knowledge is not well learned by neural models; 2) acquiring knowledge necessary for specified domains; and 3) injecting knowledge to strengthen model’s capability.”

Zhe Zeng is pursuing a PhD in computer science; her advisor is Guy Van den Broeck, associate professor of computer science.

“How can we build artificial intelligence systems that are able to make efficient and re-liable inference under complex, noisy and highly structured real-world scenarios? One primary challenge to tackle this question is that probabilistic inference in such systems is, in general, computationally intractable. While current machine learning techniques heavily emphasize on scaling up probabilistic inference, they are at the cost of harming inference reliability. One promising direction is to combine probabilistic machine learning techniques and the formal verification techniques. My research interests primarily lie in bridging between AI and formal methods for such purposes.”

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.