Image shows Torgersen Hall on the campus of Virginia Tech, the building and pedestrian bridge are in the background, flowers are in the foreground, the sky is streaked with clouds
Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning. The initiative provides an opportunity for doctoral students who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.
Virginia Tech

Amazon and Virginia Tech announce inaugural fellowship and faculty research award recipients

Two doctorate students and five Virginia Tech professors will receive funding to conduct research.

Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning.

“Our inaugural cohort of fellows and faculty-led projects showcases the breadth of machine learning research happening at Virginia Tech,” said Naren Ramakrishnan, the Thomas L. Phillips Professor of Engineering and director of the Amazon-Virginia Tech Initiative. “The areas represented include federated learning, meta-learning, leakage from machine learning models, and conversational interfaces.”

The initiative, launched in March of this year, is focused on research pertaining to efficient and robust machine learning. It provides an opportunity for doctoral students in the College of Engineering who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.

Related content
Initiative will be led by the Virginia Tech College of Engineering and directed by Thomas L. Phillips Professor of Engineering Naren Ramakrishnan.

"The talent and depth of scientific knowledge at Virginia Tech is reflected in the high-quality research proposals and PhD student fellowship applications we have received,” said Prem Natarajan, vice president of Alexa AI. “I am excited about the new insights and advances in robust machine learning that will result from the work of the faculty and students who are contributing to this initiative."

“This research will not only contribute to new algorithmic advances, but also study issues pertaining to practical and safe deployment of machine learning,” Ramakrishnan said. “We are very excited that the partnership between Amazon and Virginia Tech has enabled these projects.”

The two fellows and four faculty members will each receive funding to conduct research projects at Virginia Tech across multiple disciplines. What follows are the recipients and their areas of research.

Academic fellows

Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.
Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.

Qing Guo is pursuing a PhD in statistics and studying under Xinwei Deng, a professor in the department of statistics. Guo, who interned as an applied scientist with Alexa AI earlier this year, is researching nonparametric mutual information estimation with contrastive learning techniques; optimal Bayesian experimental design for both static and sequential models; meta-learning based on information-theoretic generalization theory; and reasoning for conversational search and recommendation.

Yi Zeng is studying under Ruoxi Jia, assistant professor of electrical and computer engineering, while pursuing a PhD in computer science. Zing’s research entails assessing potential risks as AI is increasingly used to support essential societal tasks, such as health care, business activities, financial services, and scientific research, and developing practical and effective countermeasures for the safe deployment of AI.

Faculty research award recipients

The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.
The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.

Peng Gao, assistant professor of computer science; and Ruoxi Jia, assistant professor of electrical and computer engineering, "Platform-Agnostic Privacy Leakage Monitoring for Machine Learning Models"

"Machine learning (ML) models can expose private information of training data when confronted with privacy attacks. Despite the pressing need for defenses, existing approaches have mostly focused on increasing the robustness of ML models via modifying the model training or prediction processes, which require cooperation of the underlying AI platform and thus are platform-dependent. Furthermore, how to continuously monitor the privacy leakage and detect the leakage in real time remains an important unexplored problem. In this project, we seek to enable real-time, platform-agnostic privacy leakage monitoring and detection for black-box ML models. We will first systematically assess the privacy risks due to provision of black-box access to ML models. We will then propose new platform-agnostic privacy leakage detection methods by identifying self-similar, low-utility model queries. We will finally propose a stream-based system architecture that enables real-time privacy leakage monitoring and detection."

Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division, "FEDGUARD Safeguard Federated Learning Systems against Backdoor Attacks"

"Rapid developments in machine learning have compelled organizations and individuals to rely more and more on data to solve inference and decision problems. To ease the privacy concerns of data owners, researchers and practitioners have been advocating a new learning paradigm—federated learning. Under this framework, the central learner trains a model by communicating with distributed users and keeping the training data stored locally at the users. While opening up a world of new opportunities for training machine learning models without compromising data privacy, federated learning faces significant challenges in maintaining security due to the unreliability of the distributed users. Successful completion of the project provides key enabling technologies for secure federated learning and accelerate its adoption in security-sensitive applications such as digital assistant systems."

Ismini Lourentzou, assistant professor of computer science, "Toward Unified Multimodal Conversational Embodied Agents"

"The research community has shown increasing interest in designing intelligent agents that assist humans to accomplish tasks. To do so, agents must be able to perceive the environment, recognize objects, understand natural language, and interactively ask and respond to questions. Despite recent progress on related vision-language tasks and benchmarks, most prior work has focused on building agents that follow instructions rather than endowing agents the ability to ask questions to actively resolve ambiguities arising naturally in real-world tasks. Moreover, current conversational embodied agents lack understanding of social interactions that are necessary for human-agent collaboration. Finally, due to limited knowledge transfer across tasks, generalization to unobserved contexts and scenes remains a challenge. To address these shortcomings, the objective of this proposal is to design embodied agents that know when and what questions to ask to adaptively request assistance from humans, learn to perform multiple tasks simultaneously, effectively capturing underlying skills and knowledge shared across various embodied tasks, and be able to adapt to uncertain human behaviors. The outcome will be a general-purpose embodied agent that can understand instructions, interact with humans and predict human beliefs, and reason to complete a broad range of tasks."

Walid Saad, professor of electrical and computer engineering, "Green, Efficient, and Scalable Federated Learning over Resource-Constrained Devices and Systems"

“Federated learning (FL) is a promising approach for distributed inference over the Internet of Things (IoT). However, prior FL works are limited by the assumption that IoT devices and wireless systems (e.g., 5G) have abundant resources (e.g., computing, memory, energy, communication, etc.) to run complex FL algorithms, which is impractical for real-world, resource-constrained devices and networks. The goal of this research is to overcome this challenge by designing green, efficient, and scalable FL algorithms over resource-constrained devices and wireless systems while promoting the paradigm of computing, communication, and learning system co-design. To this end, this research advances techniques from machine learning, wireless communications, game theory, and mean-field theory to yield three innovations: 1) Rigorous analysis of the joint computing, communication, and learning performance tradeoffs (e.g., between energy-efficiency, learning accuracy and efficiency, convergence time, and others) as function of the constrained system resources, 2) Optimal design of the joint learning, computing, and communication system architecture and configuration for balancing the performance tradeoffs and enabling efficient and green FL, and 3) Novel approaches for scaling the system over millions of devices. This research has tangible practical applications for all products that rely on FL over real-world wireless systems and resource-constrained devices."

Related content

IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!