Image shows Torgersen Hall on the campus of Virginia Tech, the building and pedestrian bridge are in the background, flowers are in the foreground, the sky is streaked with clouds
Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning. The initiative provides an opportunity for doctoral students who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.
Virginia Tech

Amazon and Virginia Tech announce inaugural fellowship and faculty research award recipients

Two doctorate students and five Virginia Tech professors will receive funding to conduct research.

Amazon and Virginia Tech today announced the inaugural class of academic fellows and faculty research award recipients as part of the Amazon – Virginia Tech Initiative for Efficient and Robust Machine Learning.

“Our inaugural cohort of fellows and faculty-led projects showcases the breadth of machine learning research happening at Virginia Tech,” said Naren Ramakrishnan, the Thomas L. Phillips Professor of Engineering and director of the Amazon-Virginia Tech Initiative. “The areas represented include federated learning, meta-learning, leakage from machine learning models, and conversational interfaces.”

The initiative, launched in March of this year, is focused on research pertaining to efficient and robust machine learning. It provides an opportunity for doctoral students in the College of Engineering who are conducting AI and ML research to apply for Amazon fellowships and supports research efforts led by Virginia Tech faculty members.

Related content
Initiative will be led by the Virginia Tech College of Engineering and directed by Thomas L. Phillips Professor of Engineering Naren Ramakrishnan.

"The talent and depth of scientific knowledge at Virginia Tech is reflected in the high-quality research proposals and PhD student fellowship applications we have received,” said Prem Natarajan, vice president of Alexa AI. “I am excited about the new insights and advances in robust machine learning that will result from the work of the faculty and students who are contributing to this initiative."

“This research will not only contribute to new algorithmic advances, but also study issues pertaining to practical and safe deployment of machine learning,” Ramakrishnan said. “We are very excited that the partnership between Amazon and Virginia Tech has enabled these projects.”

The two fellows and four faculty members will each receive funding to conduct research projects at Virginia Tech across multiple disciplines. What follows are the recipients and their areas of research.

Academic fellows

Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.
Virginia Tech students Qing Guo, left, who is pursuing a PhD in statistics; and Yi Zeng, right, who is pursuing a PhD in computer science, have been named as academic fellows.

Qing Guo is pursuing a PhD in statistics and studying under Xinwei Deng, a professor in the department of statistics. Guo, who interned as an applied scientist with Alexa AI earlier this year, is researching nonparametric mutual information estimation with contrastive learning techniques; optimal Bayesian experimental design for both static and sequential models; meta-learning based on information-theoretic generalization theory; and reasoning for conversational search and recommendation.

Yi Zeng is studying under Ruoxi Jia, assistant professor of electrical and computer engineering, while pursuing a PhD in computer science. Zing’s research entails assessing potential risks as AI is increasingly used to support essential societal tasks, such as health care, business activities, financial services, and scientific research, and developing practical and effective countermeasures for the safe deployment of AI.

Faculty research award recipients

The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.
The Virginia Tech faculty research award recipients are, top row, left to right: Peng Gao, assistant professor of computer science; Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division; bottom row, left to right, Ismini Lourentzou, assistant professor of computer science; and Walid Saad, professor of electrical and computer engineering.

Peng Gao, assistant professor of computer science; and Ruoxi Jia, assistant professor of electrical and computer engineering, "Platform-Agnostic Privacy Leakage Monitoring for Machine Learning Models"

"Machine learning (ML) models can expose private information of training data when confronted with privacy attacks. Despite the pressing need for defenses, existing approaches have mostly focused on increasing the robustness of ML models via modifying the model training or prediction processes, which require cooperation of the underlying AI platform and thus are platform-dependent. Furthermore, how to continuously monitor the privacy leakage and detect the leakage in real time remains an important unexplored problem. In this project, we seek to enable real-time, platform-agnostic privacy leakage monitoring and detection for black-box ML models. We will first systematically assess the privacy risks due to provision of black-box access to ML models. We will then propose new platform-agnostic privacy leakage detection methods by identifying self-similar, low-utility model queries. We will finally propose a stream-based system architecture that enables real-time privacy leakage monitoring and detection."

Ruoxi Jia, assistant professor of electrical and computer engineering; and Yalin Sagduyu, research professor in the Intelligent Systems Division, "FEDGUARD Safeguard Federated Learning Systems against Backdoor Attacks"

"Rapid developments in machine learning have compelled organizations and individuals to rely more and more on data to solve inference and decision problems. To ease the privacy concerns of data owners, researchers and practitioners have been advocating a new learning paradigm—federated learning. Under this framework, the central learner trains a model by communicating with distributed users and keeping the training data stored locally at the users. While opening up a world of new opportunities for training machine learning models without compromising data privacy, federated learning faces significant challenges in maintaining security due to the unreliability of the distributed users. Successful completion of the project provides key enabling technologies for secure federated learning and accelerate its adoption in security-sensitive applications such as digital assistant systems."

Ismini Lourentzou, assistant professor of computer science, "Toward Unified Multimodal Conversational Embodied Agents"

"The research community has shown increasing interest in designing intelligent agents that assist humans to accomplish tasks. To do so, agents must be able to perceive the environment, recognize objects, understand natural language, and interactively ask and respond to questions. Despite recent progress on related vision-language tasks and benchmarks, most prior work has focused on building agents that follow instructions rather than endowing agents the ability to ask questions to actively resolve ambiguities arising naturally in real-world tasks. Moreover, current conversational embodied agents lack understanding of social interactions that are necessary for human-agent collaboration. Finally, due to limited knowledge transfer across tasks, generalization to unobserved contexts and scenes remains a challenge. To address these shortcomings, the objective of this proposal is to design embodied agents that know when and what questions to ask to adaptively request assistance from humans, learn to perform multiple tasks simultaneously, effectively capturing underlying skills and knowledge shared across various embodied tasks, and be able to adapt to uncertain human behaviors. The outcome will be a general-purpose embodied agent that can understand instructions, interact with humans and predict human beliefs, and reason to complete a broad range of tasks."

Walid Saad, professor of electrical and computer engineering, "Green, Efficient, and Scalable Federated Learning over Resource-Constrained Devices and Systems"

“Federated learning (FL) is a promising approach for distributed inference over the Internet of Things (IoT). However, prior FL works are limited by the assumption that IoT devices and wireless systems (e.g., 5G) have abundant resources (e.g., computing, memory, energy, communication, etc.) to run complex FL algorithms, which is impractical for real-world, resource-constrained devices and networks. The goal of this research is to overcome this challenge by designing green, efficient, and scalable FL algorithms over resource-constrained devices and wireless systems while promoting the paradigm of computing, communication, and learning system co-design. To this end, this research advances techniques from machine learning, wireless communications, game theory, and mean-field theory to yield three innovations: 1) Rigorous analysis of the joint computing, communication, and learning performance tradeoffs (e.g., between energy-efficiency, learning accuracy and efficiency, convergence time, and others) as function of the constrained system resources, 2) Optimal design of the joint learning, computing, and communication system architecture and configuration for balancing the performance tradeoffs and enabling efficient and green FL, and 3) Novel approaches for scaling the system over millions of devices. This research has tangible practical applications for all products that rely on FL over real-world wireless systems and resource-constrained devices."

Related content

US, WA, Bellevue
Who are we? Do you want to build Amazon's next $100B business? We're not just joining the shipping industry—we're transforming how billions of packages move across the world every year. Through evolving Amazon's controlled, predictable fulfillment network into a dynamic, adaptive shipping powerhouse we are building an intelligent system that optimizes in real-time to deliver on the promises businesses make to their customers. Our mission goes beyond moving boxes—we're spinning a flywheel where every new package makes our network stronger, faster, and more efficient. As we increase density and scale, we're revolutionizing shipping for businesses while simultaneously strengthening Amazon's own delivery capabilities, driving down costs and increasing speed for our entire ecosystem. What will you do? Amazon shipping is seeking a Senior Data Scientist with strong pricing and machine learning skills to work in an embedded team, partnering closely with commercial, product and tech. This person will be responsible for developing demand prediction models for Amazon shipping’s spot pricing system. As a Senior Data Scientist, you will be part of a science team responsible for improving price discovery across Amazon shipping, measuring the impact of model implementation, and defining a roadmap for improvements and expansion of the models into new unique use cases. This person will be collaborating closely with business and software teams to research, innovate, and solve high impact economics problems facing the worldwide Amazon shipping business. Who are you? The ideal candidate is analytical, resourceful, curious and team oriented, with clear communication skills and the ability to build strong relationships with key stakeholders. You should be a strong owner, are right a lot, and have a proven track record of taking on end-to-end ownership of and successfully delivering complex projects in a fast-paced and dynamic business environment. As this position involves regular interaction with senior leadership (director+), you need to be comfortable communicating at that level while also working directly with various functional teams. Key job responsibilities * Combine ML methodologies with fundamental economics principles to create new pricing algorithms. * Automate price exploration through automated experimentation methodologies, for example using multi-armed bandit strategies. * Partner with other scientists to dynamically predict prices to maximize capacity utilization. * Collaborate with product managers, data scientists, and software developers to incorporate models into production processes and influence senior leaders. * Educate non-technical business leaders on complex modeling concepts, and explain modeling results, implications, and performance in an accessible manner. * Independently identify and pursue new opportunities to leverage economic insights * Opportunity to expand into other domains such as causal analytics, optimization and simulation. About the team Amazon Shipping's pricing team empowers our global business to find strategic harmony between growth and profit tradeoffs, while seeking long term customer value and financial viability. Our people and systems help identify and drive synergy between demand, operational, and economic planning. The breadth of our problems range from CEO-level strategic support to in-depth mathematical experimentation and optimization. Excited by the intersection of data and large scale strategic decision-making? This is the team for you!
US, NY, New York
Principal Applied Scientists in AWS Science of Security are dedicated to making AWS the best computing service in the world for customers who require advanced and rigorous solutions for security, privacy, and sovereignty. Key job responsibilities The successful candidate will: *Solve large or significantly complex problems that require deep knowledge and understanding of your domain and scientific innovation. *Own strategic problem solving, and take the lead on the design, implementation, and delivery for solutions that have a long-term quantifiable impact. *Povide cross-organizational technical influence, increasing productivity and effectiveness by sharing your deep knowledge and experience. * Develop strategic plans to identify fundamentally new solutions for business problems. * Assist in the career development of others, actively mentoring individuals and the community on advanced technical issues. A day in the life This is a unique and rare opportunity to get in early on a fast-growing segment of AWS and help shape the technology, product and the business. You will have a chance to utilize your deep technical experience within a fast moving, start-up environment and make a large business and customer impact.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models.  As a Principal Scientist, you will lead the research and development of complex sensing systems that help our robots perceive the world around them. You will explore and guide the exploration of novel sensing modalities, refining the existing ones, and imagine the future of robot–based perception, safety, and navigation. You will formulate a robust sensing architecture, lead the experimentation and prototyping, and take part in creating future robots that are fully aware of their surroundings. Key job responsibilities - Build and lead teams focused on hardware, firmware, and embedded systems - Drive technical roadmaps for next-generation robotics platforms - Drive architecture decisions for complex robotics perception systems - Bring the latest trends and scientific developments in robotic perception to the technical team - Create technical standards for robotics sensing platforms - Drive innovation in real-time perception and control systems
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, CA, San Francisco
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Are you passionate about applying machine learning and advanced statistical techniques to protect one of the world's largest online marketplaces? Do you want to be at the forefront of developing innovative solutions that safeguard Amazon's customers and legitimate sellers while ensuring a fair and trusted shopping experience? Do you thrive in a collaborative environment where diverse perspectives drive breakthrough solutions? If yes, we invite you to join the Amazon Global Risk Intelligence Science Team. We're seeking an exceptional scientist who can revolutionize how we protect our stores. As a key member of our team, you'll develop and deploy machine learning systems that analyze millions of seller interactions daily, ensuring the integrity and trustworthiness of Amazon's marketplace while scaling our operations to new heights. Your work will directly impact the shopping experience for hundreds of millions of customers worldwide, while supporting the growth of our selling partners. Key job responsibilities • Use machine learning and statistical techniques to create scalable abuse detection solutions that identify fraudulent seller behavior, rings of accounts, identity change, holistic seller risk and marketplace manipulation schemes • Innovate with the latest GenAI technology to build highly automated solutions for efficient transaction monitoring, and risk assessment • Design, develop and deploy end-to-end machine learning solutions in the Amazon production environment to prevent and detect sophisticated abuse patterns across the marketplace • Learn, explore and experiment with the latest machine learning advancements to protect customer trust and maintain marketplace integrity while supporting legitimate selling partners • Collaborate with cross-functional teams to develop comprehensive risk models that can adapt to evolving abuse patterns and emerging threats About the team You'll be working closely with business partners, science and engineering teams to create end-to-end scalable machine learning solutions that address real-world problems. You will build scalable, efficient, and automated processes for large-scale data analyses, model development, model validation, and model implementation. You will also be providing clear and compelling reports for your solutions and contributing to the ongoing innovation and knowledge-sharing that are central to the team's success.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI