An animation shows a stack of boxes slowly reducing in number to arrive at an optimal suite of boxes for packing items as part of Amazon's PackOpt system
By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite, thanks to implementation of the pioneering web-based PackOpt tool.

How Amazon learned to cut its cardboard waste

Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

In a world of ideal sustainability, every customer order received by Amazon that required a box would ship in a box tailored precisely to the size of its contents to minimize cardboard (corrugate) waste for the customer and maximize the efficiency of order fulfillment.

But with an ever-changing catalogue of hundreds of millions of items and multiple items often shipped in a shared box, this dream scenario would require a near-infinite range of box sizes standing ready at Amazon’s fulfillment centers (FCs).

While Amazon works toward producing right-sized boxes for each shipment, the current solution to minimizing waste is to furnish every fulfillment center with a limited suite of cardboard box options. These suites vary depending on the type of items being fulfilled. For example, some FCs are focused on shipping single or multiple items that have been sorted automatically by robots and packed by Amazon associates.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

In North America, single items shipped from sortable FCs that require a box, with some exceptions, are typically shipped within one of a finite number of box sizes. Multiple items being shipped together are packed into a box drawn from a different suite of boxes that are designed for a larger and heavier payload.

Another type of FC, known as non-sortable, deals with larger items that require oversized boxes — patio furniture, for example — and these FCs need yet another suite of boxes.

The question that Amazon has addressed with increasing success over the past few years is this: Given the items typically shipped in a particular Amazon region, marketplace, or FC, what is the optimal box suite?

That answer has now been embodied in a pioneering web-based tool called PackOpt that is being embraced by Amazon managers all over the world.

By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite. In North America, applying PackOpt technology has resulted in an annual reduction in cardboard waste of 7% to 10%, saving roughly 60,000 tons of cardboard annually. In emerging countries such as Singapore, PackOpt has delivered more than double that percentage efficiency.

Matrix revolutions

David Gasperino, an Amazon principal research scientist, led the technical development of PackOpt, which is helping Amazon’s stakeholders to not only minimize the amount of “air” shipped to customers, but also helping Amazon deliver on its Climate Pledge commitment to reaching net-zero carbon emissions across its business by 2040.

Arriving at the perfect suite of boxes is incredibly difficult, says Gasperino, partly because the number of possibilities is enormous.

This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them.
Renan Garcia

To imagine the challenge in the simplest terms, first picture a matrix 100+ million rows deep — these represent shipments over a time period within a given region. Each of the 20,000 or so columns on the matrix, meanwhile, represents a candidate box of various dimensions that might become part of a suite of boxes.

“To create an optimal set of boxes, you need to select a small subset of columns to pack all of the shipments, and those columns must lead to the smallest overall box volume when you sum it all up,” explains Gasperino.

It is a hard challenge — literally.

“This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them,” says Renan Garcia, a principal research scientist who helped to design PackOpt’s optimization framework (NP Hard is the same class of problem as the infamous “traveling salesman problem”).

The sheer size of the matrix is a challenge, says Garcia. “The matrix that you need to build is so big, you can't even store it in memory.”

Related content
Amazon joins the US DOE’s Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE™) Consortium, focusing on materials and recycling innovation.

The team addressed this computational tractability issue in several ways. First, to simplify the problem their approach narrows the range of candidate-box dimensions to 2-inch increments in any direction before the first phase of iterative improvements, reducing the initial set of candidate boxes into the hundreds.

After the optimizer discovers the best candidates in this “coarse” set of boxes, it will take those best prospects as a starting point and search again, this time using 1-inch dimensional increments, and so on toward finer dimensions.

“Theoretically, the algorithm will converge on a high-quality box suite no matter where you start,” says Garcia.

The team also employed process parallelization across multiple computational cores to break the problem into smaller chunks.

“Multiple cores can be doing this in parallel, exploring alternate solutions. And every so often they communicate their best solution back to each other,” says Garcia. The result: PackOpt can solve in minutes what previously took weeks of computation time.

3D Tetris

PackOpt for box suites shipping single items launched in 2018. A year later, an enhanced version was capable of identifying the best box suite for shipments containing multiple items in the same box.

For this iteration, the team added a high-performance algorithm that very rapidly determines how the different items to be delivered together can be configured to fit inside a candidate box — think 3D Tetris. PackOpt also knows, for example, that foldable or compressible items such as clothing can easily be slotted in around other, more solid items.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

In theory, this meant packing more items into better-fitting boxes. But did it work in practice?

“One of our colleagues, Neb Getaneh, designed and conducted studies in the Amazon Packaging Lab to quantify the impact of packaging boxes with less air due to size and fitting algorithm optimization,” says Gasperino. “And we did not see any degradation in packing performance.”

But creating a clever algorithm doesn’t automatically translate into real-world impact.

“There are many different steps that must happen between solving this optimization problem and actually delivering optimized packaging to our customers’ doorsteps,” says Gasperino. “We needed the regional packaging leads all over the world, who aren’t scientists, to quickly understand how to use PackOpt and to see the economic value in it for themselves, and eventually become the champions for packaging optimization.”

Democratizing the tool

Ease of use would be critical in the push to democratize the tool.

“PackOpt’s algorithms have about 25 different parameters and they're all scientific in nature,” Garcia says. “We didn’t want the user to worry about that kind of thing, so we abstracted these parameters away, behind the scenes.”

Gasperino and team also partnered with AWS ProServe consultants to design and build a streamlined web app to democratize use of PackOpt. The resulting user interface is simple, essentially requiring two inputs: historical shipment data of the region aiming to optimize their boxes, and the dimensions of the boxes in their current suite.

“PackOpt will then simulate how well your products fit in your current boxes, giving you a total cardboard weight, box utilization rate, and packaging volume — among many other metrics — and compare those metrics with an optimized box suite,” says Chris Collins, a support engineer who helped develop the PackOpt web tool.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

If a significant improvement is revealed, there is an immediate business and sustainability case for optimizing that suite with boxes of more appropriate dimensions. PackOpt can also identify if increasing the number of box options in a given suite will boost efficiency significantly as well as automatically track savings after teams have deployed their suite.

“The savings tracking function was developed to help stakeholders quantify the impacts of their optimized box suites in a scalable manner,” Collins explains. “This function could also be used to help the stakeholder keep their finger on the pulse of the optimized packaging suite, knowing that if the savings metrics begin to fall off it could signal to the team the need to re-optimize the current package selections.”

Another of the key metrics PackOpt reveals is air per shipment.

“It’s understandably a hot topic with Amazon customers who receive an order with too much air in the box compared with the item itself,” says Collins. “PackOpt helps improve our customer experience by really driving down such shipments.”

The word gets out

PackOpt has been embraced in fulfillment centers around the world. After proving the tool’s operational effectiveness in North America, Amazon Japan was first to show a keen interest and develop its own box suite.

“The products going through our Japan FCs are different to those going through North America’s, so there's no reason the box suites should be the same across those two regions,” notes Gasperino.

“Using PackOpt has simplified my team’s work significantly,” says Myles Lefkovitz, a customer packaging experience manager in Tokyo. “We’ve been able to accomplish things that simply wouldn’t have been possible without it and driven down our packaging costs.”

Use of the tool quickly spread around the world at the regional level. But such is the power and flexibility of PackOpt, it is increasingly being used at a more granular level by Amazon stakeholders, says Collins.

See Amazon's Bengalaru research office
Research in Bengaluru spans numerous disciplines, including fraud detection, information retrieval, advertising, automatic speech recognition, and operations.

“In India, for example, customers’ purchasing behavior, and the items purchased, vary vastly across the country, so managers at Amazon India have used PackOpt to tailor bespoke box suites for each fulfillment center.”

“Packaging optimization is a crucial part of Amazon’s commitment to The Climate Pledge and reducing waste on behalf of customers,” says Alex Hartford, business lead for packaging optimization. “In a company the scale of Amazon, even seemingly small optimizations in material reduction make a big impact not only in terms of carbon impact, but also on Amazon’s ability to lower our cost structures and spin the Amazon flywheel.”

In addition to different Amazon regions selling different products, as much as a third of a given region’s Amazon catalogue might change from one year to the next, meaning the product profile is forever changing. Moreover, new packaging types — such as recycled padded mailers or poly bags — also affect the optimal box suite. As a result, PackOpt’s monitoring mission is ongoing.

Amazon itself is a nested packing problem, right? You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … we need to optimize the dimensions of all of these.
Renan Garcia

Its creators envision how the technology could usefully spill over to the wider Amazon.

“Amazon itself is a nested packing problem, right?” says Garcia. “You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … We have storage facilities of all shapes and sizes, and we need to optimize the dimensions of all of these.”

In fact, Renan has begun applying the underlying PackOpt concepts to related applications throughout Amazon. For example, he has partnered with colleagues from Last Mile Transportation to redesign Amazon Robotics pods for outbound packages in sortation centers.

The team developed a local search framework to solve this more challenging nested packing variant (products in packages, packages in bins, and bins in pods) which generates designs requiring 33% fewer pods and leads to more efficient use of precious facility space.

“This sort of optimization opportunity exists throughout our supply chain,” says Hartford. “It is critical that we look at other parts of our network to see where we can apply both the fitting algorithms that we've developed and the optimization tools.”

Related content

US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, NY, New York
An AS III will lead complex projects in the GenAI space, specifically related to LLM-backed conversational agents that interact with multiple corporate data sources. The team works on RAG; QA from very rich documents, containing tables, plots, graphs, etc., multimodal documents, datatabase etc.; orchestration and planning multi-step actions; RAI aspects such as hallucination reduction and protection from attacks; and more. About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
AU, NSW, Sydney
AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. The Generative Artificial Intelligence (AI) Innovation Center team at AWS provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies leveraging cutting-edge generative AI algorithms. As an Applied Scientist, you'll partner with technology and business teams to build solutions that surprise and delight our customers. We’re looking for Applied Scientists capable of using generative AI and other ML techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities - Collaborate with scientists and engineers to research, design and develop cutting-edge generative AI algorithms to address real-world challenges - Work across customer engagement to understand what adoption patterns for generative AI are working and rapidly share them across teams and leadership - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths for generative AI - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction. A day in the life Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. What if I don’t meet all the requirements? That’s okay! We hire people who have a passion for learning and are curious. You will be supported in your career development here at AWS. You will have plenty of opportunities to build your technical, leadership, business and consulting skills. Your onboarding will set you up for success, including a combination of formal and informal training. You’ll also have a chance to gain AWS certifications and access mentorship programs. You will learn from and collaborate with some of the brightest technical minds in the industry today.
US, WA, Bellevue
Are you seeking an environment where you can drive innovation? Do you want to apply inference, advanced statistical modeling and techniques to solve world's most challenging problems in? Do you want to play a crucial role in the future of Amazon's Retail business? Do you want to be a part of a journey that develops a new technology from scratch for answering critical business question in Amazon Retail? Every time an Amazon customer makes a purchase, a number of systems are involved: these systems help optimize acquisition, enable a number of purchase options, ensure great , store products so they are available for fast delivery, and minimize package frustration. The Technology (SCOT) Group develops and manages these systems. We are central to Amazon customers' ability to find what they want and get it when they want it. The SCOT Lab team within SCOT Forecasting is responsible for designing and executing the inference and experimentation systems that measure the impact of SCOT initiatives. We are looking for research scientists to drive innovation in SCOT by developing/building a new scientific approach and pushing our system further upstream in the innovation process. Key responsibilities of a Research Scientist in IPC Lab include: - Developing and validating new statistical, causal, and machine learning techniques, and build solution prototypes to drive innovation - Working with technical and non-technical customers to design experiments and communicate results - Collaborating with our dedicated software team to validate production implementations for large-scale data analysis - Developing an understanding of key business metrics / KPIs and providing clear, compelling analysis that shapes the direction of our business - Presenting research results to Amazon science community - Leading training and informational sessions on our science and capabilities - Your contributions will be seen and recognized broadly within Amazon, contributing to the Amazon research corpus and patent portfolio. To help describe some of our challenges, we created a short video about at Amazon - http://bit.ly/amazon-scot
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. Concretely, you will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product. You will also be challenged to think several steps ahead so that the solutions you are building today will scale well with future growth and objective (e.g.: sustainability). You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. You will have the opportunity to thrive in a highly collaborative, creative, analytical, and fast-paced environment oriented around building the world’s most flexible and effective transportation planning and network design management technology. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of 15 scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues.
US, WA, Bellevue
WW Amazon Stores Finance Science (ASFS) works to leverage science and economics to drive improved financial results, foster data backed decisions, and embed science within Finance. ASFS is focused on developing products that empower controllership, improve business decisions and financial planning by understanding financial drivers, and innovate science capabilities for efficiency and scale. We are looking for an outstanding data scientist to lead high visibility initiatives for forecasting Amazon Stores' financials. You will develop new science-based forecasting methodologies and build scalable models to improve financial decision making and planning for senior leadership up to VP and SVP level. You will build new ML and statistical models from the ground up that aim to transform financial planning for Amazon Stores. We prize creative problem solvers with the ability to draw on an expansive methodological toolkit to transform financial decision-making with science. The ideal candidate combines data-science acumen with strong business judgment. You have versatile modeling skills and are comfortable owning and extracting insights from data. You are excited to learn from and alongside seasoned scientists, engineers, and business leaders. You are an excellent communicator and effectively translate technical findings into business action. Key job responsibilities Demonstrating thorough technical knowledge on feature engineering with large datasets, effective exploratory data analysis, and model building using industry standard ML models Working with technical and non-technical stakeholders across every step of science project life cycle Collaborating with finance, product, data engineering, and software engineering teams to create production implementations for large-scale ML models Innovating by adapting new modeling techniques and procedures Presenting research results to our internal research community
IL, Haifa
Come build the future of entertainment with us. Are you interested in helping shape the future of movies and television? Do you want to help define the next generation of how and what Amazon customers are watching? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows from Originals and Exclusive content to exciting live sports events. We also offer our members the opportunity to subscribe to add-on channels which they can cancel at any time and to rent or buy new release movies and TV box sets on the Prime Video Store. Prime Video is a fast-paced, growth business - available in over 240 countries and territories worldwide. The team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. If this sounds exciting to you, please read on As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), natural language processing (NLP), multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s recommendation systems, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Lead cutting-edge research in computer vision and natural language processing, applying it to video-centric media challenges. - Develop scalable machine learning models to enhance media asset generation, content discovery, and personalization. - Collaborate closely with engineering teams to integrate your models into production systems at scale, ensuring optimal performance and reliability. - Actively participate in publishing your research in leading conferences and journals. - Lead a team of skilled applied scientists, you will shape the research strategy, create forward-looking roadmaps, and effectively communicate progress and insights to senior leadership - Stay up-to-date with the latest advancements in AI and machine learning to drive future research initiatives. About the team At Prime Video, we strive to deliver the best-in-class entertainment experiences across devices for millions of customers. Whether it’s developing new personalization algorithms, improving video content discovery, or building robust media processing systems, our scientists and engineers tackle real-world challenges daily. You’ll be part of a fast-paced environment where experimentation, risk-taking, and innovation are encouraged.
BR, SP, Sao Paulo
The Transportation Data Scientist is responsible for leveraging data analytics and machine learning techniques to gain insights and drive decision-making for transportation-related challenges. This role involves working closely with all miles from transportation, planning areas, and engineering teams to identify, collect, and analyze relevant data to uncover patterns, trends, and predictions that can optimize transportation systems and services. Key job responsibilities Collaborate with cross-functional teams to understand transportation challenges and identify data sources that can provide valuable insights Design and implement data collection, processing, and storage pipelines to gather and manage large-scale transportation data (e.g., traffic sensor data, vehicle telematics, rideshare data, infrastructure utilization, etc.); Develop advanced analytical models and machine learning algorithms to analyze transportation data and generate predictive insights (e.g., demand forecasting, route optimization, infrastructure maintenance planning, etc.) Visualize and present data-driven insights and recommendations to stakeholders, including transportation miles (ATS, AMZL, 3P carriers and Air), operations teams, and decision-makers. Stay up-to-date with the latest trends, technologies, and best practices in transportation data science and analytics; Contribute to the development and improvement of the organization's transportation data strategy and capabilities.
FR, Courbevoie
Amazon launched the Generative AI Innovation Center (GenAIIC) in June 2023 to help AWS customers accelerate the use of generative AI to solve business and operational problems and promote innovation in their organization. This is a team of strategists, data scientists, engineers, and solution architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI.(https://press.aboutamazon.com/2023/6/aws-announces- generative-ai-innovation-center). We’re looking for Data Scientists capable of using generative AI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities As a Data Scientist, you will - Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate cutting-edge generative AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of generative AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction About the team The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train or fine tune the right models, define paths to navigate technical or business challenges, develop proof-of-concepts, and make plans for launching solutions at scale. The Generative AI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, WA, Seattle
Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video applied scientist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for passionate, hard-working, and talented individuals to help us push the envelope of content localization. We work on a broad array of research areas and applications, including but not limited to multimodal machine translation, speech synthesis, speech analysis, and asset quality assessment. Candidates should be prepared to help drive innovation in one or more areas of machine learning, audio processing, and natural language understanding. Key job responsibilities We are seeking a science leader with deep knowledge of multi-modal content understanding, including Vision Language Models (VLMs) and Multi-Modal Language Models (MMLMs). You will help drive the alignment of Engineering roadmaps to support scientific capabilities, and you will be a voice of future technology for our Product partners. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! For examples of our work, please see a selection of our publications from ECCV, ICCV and ICLR: • https://www.amazon.science/publications/diffsign-ai-assisted-generation-of-customizable-sign-language-videos-with-enhanced-realism • https://www.amazon.science/publications/text-guided-video-masked-autoencoder • https://www.amazon.science/publications/look-globally-and-locally-inter-intra-contrastive-learning-from-unlabeled-videos About the team Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. On Prime Video, customers can find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies Road House, The Lord of the Rings: The Rings of Power, Fallout, Reacher, The Boys, and The Idea of You; licensed fan favorites Dawson’s Creek and IF; Prime member exclusive access to coverage of live sports including Thursday Night Football, WNBA, and NWSL, and acclaimed sports documentaries including Bye Bye Barry and Federer; and programming from partners such as Apple TV+, Max, Crunchyroll, and MGM+ via Prime Video add-on subscriptions, as well as more than 500 free ad-supported (FAST) Channels. Prime members in the U.S. can share a variety of benefits, including Prime Video, by using Amazon Household. Prime Video is one benefit among many that provides savings, convenience, and entertainment as part of the Prime membership. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles, including blockbusters such as Challengers and The Fall Guy, via the Prime Video Store, and can enjoy content such as Jury Duty and Bosch: Legacy free with ads on Freevee. Customers can also go behind the scenes of their favorite movies and series with exclusive X-Ray access. For more info visit www.amazon.com/primevideo.