An animation shows a stack of boxes slowly reducing in number to arrive at an optimal suite of boxes for packing items as part of Amazon's PackOpt system
By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite, thanks to implementation of the pioneering web-based PackOpt tool.

How Amazon learned to cut its cardboard waste

Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

In a world of ideal sustainability, every customer order received by Amazon that required a box would ship in a box tailored precisely to the size of its contents to minimize cardboard (corrugate) waste for the customer and maximize the efficiency of order fulfillment.

But with an ever-changing catalogue of hundreds of millions of items and multiple items often shipped in a shared box, this dream scenario would require a near-infinite range of box sizes standing ready at Amazon’s fulfillment centers (FCs).

While Amazon works toward producing right-sized boxes for each shipment, the current solution to minimizing waste is to furnish every fulfillment center with a limited suite of cardboard box options. These suites vary depending on the type of items being fulfilled. For example, some FCs are focused on shipping single or multiple items that have been sorted automatically by robots and packed by Amazon associates.

Related content
A combination of deep learning, natural language processing, and computer vision enables Amazon to hone in on the right amount of packaging for each product.

In North America, single items shipped from sortable FCs that require a box, with some exceptions, are typically shipped within one of a finite number of box sizes. Multiple items being shipped together are packed into a box drawn from a different suite of boxes that are designed for a larger and heavier payload.

Another type of FC, known as non-sortable, deals with larger items that require oversized boxes — patio furniture, for example — and these FCs need yet another suite of boxes.

The question that Amazon has addressed with increasing success over the past few years is this: Given the items typically shipped in a particular Amazon region, marketplace, or FC, what is the optimal box suite?

That answer has now been embodied in a pioneering web-based tool called PackOpt that is being embraced by Amazon managers all over the world.

By the end of 2022, about 90% of all boxes shipped by Amazon will be sent from an optimized box suite. In North America, applying PackOpt technology has resulted in an annual reduction in cardboard waste of 7% to 10%, saving roughly 60,000 tons of cardboard annually. In emerging countries such as Singapore, PackOpt has delivered more than double that percentage efficiency.

Matrix revolutions

David Gasperino, an Amazon principal research scientist, led the technical development of PackOpt, which is helping Amazon’s stakeholders to not only minimize the amount of “air” shipped to customers, but also helping Amazon deliver on its Climate Pledge commitment to reaching net-zero carbon emissions across its business by 2040.

Arriving at the perfect suite of boxes is incredibly difficult, says Gasperino, partly because the number of possibilities is enormous.

This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them.
Renan Garcia

To imagine the challenge in the simplest terms, first picture a matrix 100+ million rows deep — these represent shipments over a time period within a given region. Each of the 20,000 or so columns on the matrix, meanwhile, represents a candidate box of various dimensions that might become part of a suite of boxes.

“To create an optimal set of boxes, you need to select a small subset of columns to pack all of the shipments, and those columns must lead to the smallest overall box volume when you sum it all up,” explains Gasperino.

It is a hard challenge — literally.

“This problem belongs to a theoretical class of problems called ‘NP hard’: essentially, no one knows if there's a really efficient algorithm to solve them,” says Renan Garcia, a principal research scientist who helped to design PackOpt’s optimization framework (NP Hard is the same class of problem as the infamous “traveling salesman problem”).

The sheer size of the matrix is a challenge, says Garcia. “The matrix that you need to build is so big, you can't even store it in memory.”

Related content
Amazon joins the US DOE’s Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment (BOTTLE™) Consortium, focusing on materials and recycling innovation.

The team addressed this computational tractability issue in several ways. First, to simplify the problem their approach narrows the range of candidate-box dimensions to 2-inch increments in any direction before the first phase of iterative improvements, reducing the initial set of candidate boxes into the hundreds.

After the optimizer discovers the best candidates in this “coarse” set of boxes, it will take those best prospects as a starting point and search again, this time using 1-inch dimensional increments, and so on toward finer dimensions.

“Theoretically, the algorithm will converge on a high-quality box suite no matter where you start,” says Garcia.

The team also employed process parallelization across multiple computational cores to break the problem into smaller chunks.

“Multiple cores can be doing this in parallel, exploring alternate solutions. And every so often they communicate their best solution back to each other,” says Garcia. The result: PackOpt can solve in minutes what previously took weeks of computation time.

3D Tetris

PackOpt for box suites shipping single items launched in 2018. A year later, an enhanced version was capable of identifying the best box suite for shipments containing multiple items in the same box.

For this iteration, the team added a high-performance algorithm that very rapidly determines how the different items to be delivered together can be configured to fit inside a candidate box — think 3D Tetris. PackOpt also knows, for example, that foldable or compressible items such as clothing can easily be slotted in around other, more solid items.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

In theory, this meant packing more items into better-fitting boxes. But did it work in practice?

“One of our colleagues, Neb Getaneh, designed and conducted studies in the Amazon Packaging Lab to quantify the impact of packaging boxes with less air due to size and fitting algorithm optimization,” says Gasperino. “And we did not see any degradation in packing performance.”

But creating a clever algorithm doesn’t automatically translate into real-world impact.

“There are many different steps that must happen between solving this optimization problem and actually delivering optimized packaging to our customers’ doorsteps,” says Gasperino. “We needed the regional packaging leads all over the world, who aren’t scientists, to quickly understand how to use PackOpt and to see the economic value in it for themselves, and eventually become the champions for packaging optimization.”

Democratizing the tool

Ease of use would be critical in the push to democratize the tool.

“PackOpt’s algorithms have about 25 different parameters and they're all scientific in nature,” Garcia says. “We didn’t want the user to worry about that kind of thing, so we abstracted these parameters away, behind the scenes.”

Gasperino and team also partnered with AWS ProServe consultants to design and build a streamlined web app to democratize use of PackOpt. The resulting user interface is simple, essentially requiring two inputs: historical shipment data of the region aiming to optimize their boxes, and the dimensions of the boxes in their current suite.

“PackOpt will then simulate how well your products fit in your current boxes, giving you a total cardboard weight, box utilization rate, and packaging volume — among many other metrics — and compare those metrics with an optimized box suite,” says Chris Collins, a support engineer who helped develop the PackOpt web tool.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

If a significant improvement is revealed, there is an immediate business and sustainability case for optimizing that suite with boxes of more appropriate dimensions. PackOpt can also identify if increasing the number of box options in a given suite will boost efficiency significantly as well as automatically track savings after teams have deployed their suite.

“The savings tracking function was developed to help stakeholders quantify the impacts of their optimized box suites in a scalable manner,” Collins explains. “This function could also be used to help the stakeholder keep their finger on the pulse of the optimized packaging suite, knowing that if the savings metrics begin to fall off it could signal to the team the need to re-optimize the current package selections.”

Another of the key metrics PackOpt reveals is air per shipment.

“It’s understandably a hot topic with Amazon customers who receive an order with too much air in the box compared with the item itself,” says Collins. “PackOpt helps improve our customer experience by really driving down such shipments.”

The word gets out

PackOpt has been embraced in fulfillment centers around the world. After proving the tool’s operational effectiveness in North America, Amazon Japan was first to show a keen interest and develop its own box suite.

“The products going through our Japan FCs are different to those going through North America’s, so there's no reason the box suites should be the same across those two regions,” notes Gasperino.

“Using PackOpt has simplified my team’s work significantly,” says Myles Lefkovitz, a customer packaging experience manager in Tokyo. “We’ve been able to accomplish things that simply wouldn’t have been possible without it and driven down our packaging costs.”

Use of the tool quickly spread around the world at the regional level. But such is the power and flexibility of PackOpt, it is increasingly being used at a more granular level by Amazon stakeholders, says Collins.

See Amazon's Bengalaru research office
Research in Bengaluru spans numerous disciplines, including fraud detection, information retrieval, advertising, automatic speech recognition, and operations.

“In India, for example, customers’ purchasing behavior, and the items purchased, vary vastly across the country, so managers at Amazon India have used PackOpt to tailor bespoke box suites for each fulfillment center.”

“Packaging optimization is a crucial part of Amazon’s commitment to The Climate Pledge and reducing waste on behalf of customers,” says Alex Hartford, business lead for packaging optimization. “In a company the scale of Amazon, even seemingly small optimizations in material reduction make a big impact not only in terms of carbon impact, but also on Amazon’s ability to lower our cost structures and spin the Amazon flywheel.”

In addition to different Amazon regions selling different products, as much as a third of a given region’s Amazon catalogue might change from one year to the next, meaning the product profile is forever changing. Moreover, new packaging types — such as recycled padded mailers or poly bags — also affect the optimal box suite. As a result, PackOpt’s monitoring mission is ongoing.

Amazon itself is a nested packing problem, right? You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … we need to optimize the dimensions of all of these.
Renan Garcia

Its creators envision how the technology could usefully spill over to the wider Amazon.

“Amazon itself is a nested packing problem, right?” says Garcia. “You put customer orders inside boxes, you put boxes inside tote bags, you put tote bags inside trucks … We have storage facilities of all shapes and sizes, and we need to optimize the dimensions of all of these.”

In fact, Renan has begun applying the underlying PackOpt concepts to related applications throughout Amazon. For example, he has partnered with colleagues from Last Mile Transportation to redesign Amazon Robotics pods for outbound packages in sortation centers.

The team developed a local search framework to solve this more challenging nested packing variant (products in packages, packages in bins, and bins in pods) which generates designs requiring 33% fewer pods and leads to more efficient use of precious facility space.

“This sort of optimization opportunity exists throughout our supply chain,” says Hartford. “It is critical that we look at other parts of our network to see where we can apply both the fitting algorithms that we've developed and the optimization tools.”

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.