precision-recall.gif
Amazon Web Services has expanded Machine Learning University courses with MLU Explain, a public website containing visual essays that incorporate animations to explain machine learning concepts in an accessible manner.

Amazon's Machine Learning University expands with MLU Explain

Fun visual essays explain key concepts of machine learning.

Machine learning’s importance to Amazon — and to the world at large — has spurred the need for a large number of people in the workforce to become well-versed in the fundamentals, and to learn how to utilize it for business value.

In machine learning, it's important to find a way to assess the generalization capabilities of a model without having to wait for new data. A new MLU article discusses one of the most common approaches for this task: K-Fold Cross-Validation.

With that objective in mind, in 2016 the company launched Machine Learning University (MLU) as an in-house educational resource for employees. The classes, taught by Amazon experts, are designed to sharpen the skills of current ML practitioners, while also providing novices the ability to learn to deploy machine learning for their own projects.

Related content
Classes previously only available to Amazon employees will now be available to the community.

Then in 2020 — responding to a growing need for ML education and in an effort to lower barriers for those who want to get started with practical machine learning — Amazon opened those courses to the public.

Jared Wilber, a data scientist who both teaches some of the MLU courses as well as develops fascinating visual explainers for those courses, says the goal is to help people — both seasoned veterans and newcomers alike — learn how to use machine learning in their roles.

MLU classes

“There are so many people who have very strong technical skills, but who don’t know a ton about machine learning,” he says. “So, our goals for MLU are twofold: the first is to teach machine learning to people who have no experience with how it works and how they can use it, and the second is to help people who already have some experience and want to sharpen their skills.”

Accelerated Natural Language Processing 1.1 - Course Introduction

MLU offers a range of courses, ranging from beginner to advanced, for the general public and for Amazon employees.

These courses use resources such as Amazon datasets, case studies, and AWS tools to help learners create real-world work product. The courses available to the public include topics such as natural language processing, computer vision, tabular data, and decision trees/ensemble methods.

MLU also offers ten advanced courses for Amazon employees; these 36-hour courses are delivered in three-hour blocks for two weeks. Advanced topics include deep learning, reinforcement learning, mathematical fundamentals for machine learning, probabilistic graphical models, and ML production.

MLU Explain

Now, Amazon Web Services has further expanded MLU with MLU Explain, a public website containing visual essays that incorporate fun animations and “scrolly-telling” to explain machine learning concepts in an accessible manner.

This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).
This animation is from an MLU Explains article that explains the Receiver Operating Characteristic Curve (ROC) curve, how it works with a live interactive example, and how it relates to Area Under The Curve (AUC).

“MLU Explain is a series of interactive articles covering core machine learning concepts, and they're meant to provide supplementary material that's educational within a light, but still informative format,” Wilber says. “Currently we have eight articles available, including articles on bias variance trade-off, the random forest algorithm, and two articles on double descent.”

Related content
How Jared Wilber is using his skills as a storyteller and data scientist to help others learn about machine learning.

Wilber points out that the second essay of the two-part series on the double descent phenomenon contains novel research by his colleague Brent Werness, MLU’s lead instructor who also is an AWS research scientist.

“That’s an example of something we try to do with every essay: try to present like a little cool thing that is often overlooked, even in textbooks. We ask ourselves, ‘What's something we could add that's often overlooked?’”

One of the MLU visual essays is “The Importance of Data Splitting,” which illustrates the concept of data splitting, or when data is divided into two more subsets. The article uses animations of dogs and cats being separated by species to communicate the concept.

This animation is from an MLU Explains article that teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs.
This animation teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs.

“This is a machine learning model trained in a browser,” Wilber says. “So, if you move the dogs around, such as for the characteristic of ‘fluffiness,’ you can see that the decision boundary moves itself. It’s pretty fun.

“The goal is to make interacting with these systems as unintimidating and fun as possible. We want to make it accessible for everyone.”

MLU Explain articles

The most recent articles posted on MLU Explain include:

  • Train, Test, and Validation Sets: This article teaches the concepts of data splitting in machine learning using an example model that attempts to determine whether animals are cats or dogs. The model is live in the browser, and users can explore using the algorithm by dragging the cat and dog icons around.
  • ROC & AUC: These are tools to understand an algorithm’s outputs, and to determine an acceptable level of false negatives and false positives. These techniques were first used during World War II to analyze radar signals.
  • Precision & Recall: “When evaluating classification models, practitioners need to account for more than just accuracy,” Wilber says. “Precision and recall are two popular alternatives to understand the consequences of your model’s outputs.”
  • Random Forest: An article exploring “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”

What's next for MLU-Explain?

As for the future of MLU-Explain, Wilber says several new ideas are on the table.

The first is to consider doing deeper dives into certain important machine learning topics, which Wilber calls “high-surface” topics, such as articles on popular algorithms like gradient descent, logistic regression, and neural networks (all currently in development).

This MLU Explains animation illustrates “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”
This animation illustrates “how the majority vote and well-placed randomness can extend the decision-tree model to one of machine learning's most widely used algorithms, the Random Forest.”

“We want to expand the material to cover concepts typically taught in an introductory machine learning course.” This includes covering concepts in new MLU offerings, such as the new course on time series by Lucía Santamaría, an MLU applied scientist based in Europe who also worked on the decision tree visual essay.

More on MLU
Decision trees class gives students access to cutting-edge instruction on key machine-learning topic.

After that, Wilber plans to tackle more complex topics.

“We’d like to eventually cover topics pertaining to deep learning, like attention-mechanisms, neural network architectures, etc. MLU has a close relationship with the D2L team [authors of the Dive Into Deep Learning textbook] and we plan to author companion articles to concepts covered in their book — which is amazing, for the record.”

Related content
The newest chapter addresses a problem that often bedevils nonparametric machine learning models.

Further down the road, Wilber envisions broadening the set of assets to add self-assessments, open contributions, and even gamification.

“A lot of the algorithms you could think of as a game, where parameters affect game state and outcome,” he observes. “There are definitely opportunities to build on that.”

Wilber sees an opportunity to allow for others to contribute to the effort as well.

“These sorts of interactive documents are difficult to make, so I’ve done my best to make them as easy and open to copy as possible,” he explains. “The code for each article is available open-source, each article references any resources used in its creation, and I’ve created a reusable template for our articles with many of the niceties baked in — so feel free to contribute!”

This animation from MLU Explains is meant to help students understand the tradeoff between under- and over-fitting models and how it relates to bias and variance.
This animation is meant to help students understand the tradeoff between under- and over-fitting models and how it relates to bias and variance.

Whatever the path, Wilber says he hopes these assets can help people both at Amazon and externally learn how to make the best use of a rapidly expanding technology.

All MLU-Explain articles are available for free to anyone seeking to learn more about the machine-learning field. To dive deeper into deep-learning topics, Dive into Deep Learning is an interactive book with code, math, and discussions. The book, which has been adopted by 300 universities in 55 countries, is implemented in NumPy/MXNet, PyTorch, and TensorFlow

Research areas

Related content

US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.