Amazon Redshift re-invented research paper and photos of Rahul Pathak, vice president of analytics at AWS, and Ippokratis Pandis, AWS senior principal engineer
The "Amazon Redshift re-invented" research paper will be presented at a leading database conference next month. Two of the paper's authors, Rahul Pathak (top right), vice president of analytics at AWS, and Ippokratis Pandis (bottom right), an AWS senior principal engineer, discuss the origins of Redshift, how the system has evolved in the past decade, and where they see the service evolving in the years ahead.

Amazon Redshift: Ten years of continuous reinvention

Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

Nearly ten years ago, in November 2012 at the first-ever Amazon Web Services (AWS) re:Invent, Andy Jassy, then AWS senior vice president, announced the preview of Amazon Redshift, the first fully managed, petabyte-scale cloud data warehouse. The service represented a significant leap forward from traditional on-premises data warehousing solutions, which were expensive, inflexible, and required significant human and capital resources to operate.

In a blog post on November 28, 2012, Werner Vogels, Amazon chief technical officer, highlighted the news: “Today, we are excited to announce the limited preview of Amazon Redshift, a fast and powerful, fully managed, petabyte-scale data warehouse service in the cloud.”

Further in the post, Vogels added, “The result of our focus on performance has been dramatic. Amazon.com’s data warehouse team has been piloting Amazon Redshift and comparing it to their on-premise data warehouse for a range of representative queries against a two billion row data set. They saw speedups ranging from 10x – 150x!”

That’s why, on the day of the announcement, Rahul Pathak, then a senior product manager, and the entire Amazon Redshift team were confident the product would be popular.

“But we didn’t really understand how popular,” he recalls.

“At preview we asked customers to sign up and give us some indication of their data volume and workloads,” Pathak, now vice president of Relational Engines at AWS, said. “Within about three days we realized that we had ten times more demand for Redshift than we had planned for the entire first year of the service. So we scrambled right after re:Invent to accelerate our hardware orders to ensure we had enough capacity on the ground for when the product became generally available in early 2013. If we hadn’t done that preview, we would have been caught short.”

The Redshift team has been sprinting to keep apace of customer demand ever since. Today, the service is used by tens of thousands of customers to process exabytes of data daily. In June a subset of the team will present the paper “Amazon Redshift re-invented ” at a leading international forum for database researchers, practitioners, and developers, the ACM SIGMOD/PODS Conference in Philadelphia.

Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

The paper highlights four key areas where Amazon Redshift has evolved in the past decade, provides an overview of the system architecture, describes its high-performance transactional storage and compute layers, details how smart autonomics are provided, and discusses how AWS and Redshift make it easy for customers to use the best set of services to meet their needs.

Amazon Science recently connected with two of the paper’s authors, Pathak, and Ippokratis Pandis, an AWS senior principal engineer, to discuss the origins of Redshift, how the system has evolved over the past decade, and where they see the service evolving in the years ahead.

  1. Q. 

    Can you provide some background on the origin story for Redshift? What were customers seeking, and how did the initial version address those needs?

    A. 

    Rahul: We had been meeting with customers who in the years leading up to the launch of Amazon Redshift had moved just about every workload they had to the cloud except for their data warehouse. In many cases, it was the last thing they were running on premises, and they were still dealing with all of the challenges of on-premises data warehouses. They were expensive, had punitive licensing, were hard to scale, and customers couldn’t analyze all of their data. Customers told us they wanted to run data warehousing at scale in the cloud, that they didn’t want to compromise on performance or functionality, and that it had to be cost-effective enough for them to analyze all of their data.

    So, this is what we started to build, operating under the code name Cookie Monster. This was at a time when customers’ data volumes were exploding, and not just from relational databases, but from a wide variety of sources. One of our early private beta customers tried it and the results came back so fast they thought the system was broken. It was about 10 to 20 times faster than what they had been using before. Another early customer was pretty unhappy with gaps in our early functionality. When I heard about their challenges, I got in touch, understood their feedback, and incorporated it into the service before we made it generally available in February 2013. This customer soon turned into one of our biggest advocates.

    When we launched the service and announced our pricing at $1000 a terabyte per year, people just couldn’t believe we could offer a product with that much capability at such a low price point. The fact that you could provision a data warehouse in minutes instead of months also caught everyone’s attention. It was a real game-changer for this industry segment.

    Ippokratis: I was at IBM Research at the time working on database technologies there, and we recognized that providing data warehousing as a cloud service was a game changer. It was disruptive. We were working with customers’ on-premises systems where it would take us several days or weeks to resolve an issue, whereas with a cloud data warehouse like Redshift, it would take minutes. It was also apparent that the rate of innovation would accelerate in the cloud.

    In the on-premises world, it was taking months if not years to get new functionality into a software release, whereas in the cloud new capabilities could be introduced in weeks, without customers having to change a single line of code in their consuming applications. The Redshift announcement was an inflection point; I got really interested in the cloud, and cloud data warehouses, and eventually joined Amazon [Ippokratis joined the Redshift team as a principal engineer in Oct. 2015].

  2. Q. 

    How has Amazon Redshift evolved over the past decade since the launch nearly 10 years ago?

    A. 

    Ippokratis: As we highlight in the paper, the service has evolved at a rapid pace in response to customers’ needs. We focused on four main areas: 1) customers’ demand for high-performance execution of increasingly complex analytical queries; 2) our customers’ need to process more data and significantly increase the number of users who need to derive insights from that data; 3) customers’ need for us to make the system easier to use; and 4) our customers’ desire to integrate Redshift with other AWS services, and the AWS ecosystem. That’s a lot, so we’ll provide some examples across each dimension.

    Related publication
    Enterprise companies use spatial data for decision optimization and gain new insights regarding the locality of their business and services. Industries rely on efficiently combining spatial and business data from different sources, such as data warehouses, geospatial information systems, transactional systems, and data lakes, where spatial data can be found in structured or unstructured form. In this demonstration

    Offering the leading price performance has been our primary focus since Rahul first began working on what would become Redshift. From the beginning, the team has focused on making core query execution latency as low as possible so customers can run more workloads, issue more jobs into the system, and run their daily analysis. To do this, Redshift generates C++ code that is highly optimized and then sends it to the distributor in the parallel database and executes this highly optimized code. This makes Redshift unique in the way it executes queries, and it has always been the core of the service.

    We have never stopped innovating here to deliver our customers the best possible performance. Another thing that’s been interesting to me is that in the traditional business intelligence (BI) world, you optimize your system for very long-running jobs. But as we observe the behavior of our customers in aggregate, what’s surprising is that 90 percent of our queries among the billions we run daily in our service execute in less than one second. That’s not what people had traditionally expected from a data warehouse, and that has changed the areas of the code that we optimize.

    Rahul: As Ippokratis mentioned, the second area we focused on in the paper was customers’ need to process more data and to use that data to drive value throughout the organization. Analytics has always been super important, but eight or ten years ago it wasn’t necessarily mission critical for customers in the same way transactional databases were. That has definitely shifted. Today, core business processes rely on Redshift being highly available and performant. The biggest architectural change in the past decade in support of this goal was the introduction of Redshift Managed Storage, which allowed us to separate compute and storage, and focus a lot of innovation in each area.

    Diagram of the Redshift Managed Storage
    The Redshift managed storage layer (RMS) is designed for a durability of 99.999999999% and 99.99% availability over a given year, across multiple availability zones. RMS manages both user data as well as transaction metadata.

    Another big trend has been the desire of customers to query across and integrate disparate datasets. Redshift was the first data warehouse in the cloud to query Amazon S3 data, that was with Redshift Spectrum in 2017. Then we demonstrated the ability to run a query that scanned an exabyte of data in S3 as well as data in the cluster. That was a game changer.

    Customers like NASDAQ have used this extensively to query data that’s on local disk for the highest performance, but also take advantage of Redshift’s ability to integrate with the data lake and query their entire history of data with high performance. In addition to querying the data lake, integrated querying of transactional data stores like Aurora and RDS has been another big innovation, so customers can really have a high-performance analytics system that’s capable of transparently querying all of the data that matters to them without having to manage these complex integration processes that other systems require.

    Illustration of how a query flows through Redshift.
    This diagram from the research paper illustrates how a query flows through Redshift. The sequence is described in detail on pages 2 and 3 of the paper.

    Ippokratis: The third area we focused on in the paper was ease of use. One change that stands out for me is that on-premises data warehousing required IT departments to have a DBA (data base administrator) who would be responsible for maintaining the environment. Over the past decade, the expectation from customers has evolved. Now, if you are offering data warehousing as a service, the systems must be capable of auto tuning, auto healing, and auto optimizing. This has become a big area of focus for us where we incorporate machine learning and automation into the system to make it easier to use, and to reduce the amount of involvement required of administrators.

    Rahul: In terms of ease of use, three innovations come to mind. One is concurrency scaling. Similar to workload management, customers would previously have to manually tweak concurrency or reset clusters of the manually split workloads. Now, the system automatically provisions new resources and scales up and down without customers having to take any action. This is a great example of how Redshift has gotten much more dynamic and elastic.

    The second ease of use innovation is automated table optimization. This is another place where the system is able to observe workloads and data layouts and automatically suggest how data should be sorted and distributed across nodes in the cluster. This is great because it’s a continuously learning system so workloads are never static in time.

    Related publication
    How should we split data among the nodes of a distributed data warehouse in order to boost performance for a forecasted workload? In this paper, we study the effect of different data partitioning schemes on the overall network cost of pairwise joins. We describe a generally-applicable data distribution framework initially designed for Amazon Redshift, a fully-managed petabyte-scale data warehouse in the

    Customers are always adding more datasets, and adding more users, so what was optimal yesterday might not be optimal tomorrow. Redshift observes this and modifies what's happening under the covers to balance that. This was the focus of a really interesting graph optimization paper that we wrote a few years ago about how to analyze for optimal distribution keys for how data is laid out within a multi-node parallel-processing system. We've coupled this with automated optimization and then table encoding. In an analytics system, how you compress data has a big impact because the less data you scan, the faster your queries go. Customers had to reason about this in the past. Now Redshift can automatically determine how to encode data correctly to deliver the best possible performance for the data and the workload.

    The third innovation I want to highlight here is Amazon Redshift Serverless, which we launched in public preview at re:Invent last fall. Redshift Serverless removes all of the management of instances and clusters, so customers can focus on getting to insights from data faster and not spend time managing infrastructure. With Redshift Serverless, customers can simply provision an endpoint and begin to interact with their data, and Redshift Serverless will auto scale and automatically manage the system to essentially remove all of that complexity from customers.

    Customers can just focus on their data, set limits to manage their budgets, and we deliver optimal performance between those limits. This is another massive step forward in terms of ease of use because it eliminates any operations for customers. The early response to the preview has been tremendous. Thousands of customers have been excited to put Amazon Redshift Serverless through its paces over the past few months, and we’re excited about making it generally available in the near future.

    Amazon Redshift architecture diagram
    The Amazon Redshift architecture as presented in the research paper.

    Ippokratis: A fourth area of focus in the paper is on integration with other AWS services, and the AWS ecosystem. Integration is another area where customer behavior has evolved from traditional BI use cases. Today, cloud data warehouses are a central hub with tight integration with a broader set of AWS services. We provided the ability for customers to join data from the warehouse with the data lake. Then customers said they needed access to high-velocity business data in operational databases like Aurora and RDS, so we provided access to these operational data stores. Then we added support for streams, as well as integration with SageMaker and Lambda so customers can run machine learning training and inference without moving their data, and do generic compute. As a result, we’ve converted the traditional BI system into a well-integrated set of AWS services.

    Rahul: One big area of integration has been with our machine-learning ecosystem. With Redshift ML we have enabled anyone who knows SQL to take advantage of all of our machine-learning innovation. We built the ability to create a model from the SQL prompt, which gets the data into Amazon S3 and calls Amazon SageMaker, to use automated machine learning to build the most appropriate model to provide predictions on the data.

    This model is compiled efficiently and brought back into the data warehouse for customers to run very high-performance parallel inferences with no additional compute or no extra cost. The beauty of this integration is that every innovation we make within SageMaker means that Redshift ML gets better as well. This is just another means by which customers benefit from us connecting our services together.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    Another big area for integration has been data sharing. Once we separated storage and compute layers with RA3 instances, we could enable data sharing, giving customers the ability to share data with clusters in the same account, and other accounts, or across regions. This allows us to separate consumers from producers of data, which enables things like modern data mesh architectures. Customers can share data without data copying, so they are transactionally consistent across accounts.

    For example, users within a data-science organization can securely work from the shared data, as can users within the reporting or marketing organization. We’ve also integrated data sharing with AWS Data Exchange, so now customers can search for — and subscribe to — third-party datasets that are live, up to date, and can be queried immediately in Redshift. This has been another game changer from the perspective of setting data free, enabling data monetization for third-party providers, and secure and live data access and licensing for subscribers for high-performance analytics within and across organizations. The fact that Redshift is part of an incredibly rich data ecosystem is a huge win for customers, and in keeping with customers’ desire to make data more pervasively available across the company.

  3. Q. 

    You indicate in the paper that Redshift innovation is continuing at an accelerated pace.  How do you see the cloud data warehouse segment evolving – and more specifically Redshift – over the next several years?

    A. 

    Rahul: A few things will continue to be true as we head into the future. Customers will be generating ever more amounts of data, and they’re going to want to analyze that data more cost effectively. Data volumes are growing exponentially, but obviously customers don't want their costs growing exponentially. This requires that we continue to innovate, and find new levels of performance to ensure that the cost of processing a unit of data continues to go down.

    We’ll continue innovating in software, in hardware, in silicon, and in using machine learning to make sure we deliver on that promise for customers. We’ve delivered on that promise for the past 10 years, and we’ll focus on making sure we deliver on that promise into the future.

    I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.
    Ippokratis Pandis

    Also, customers are always going to want better availability, they’re always going to want their data to be secure, and they’re always going to want more integrations with more data sources, and we intend to continue to deliver on all of those. What will stay the same is our ability to offer the-best in-segment price performance and capabilities, and the best-in-segment integration and security because they will always deliver value for customers.

    Ippokratis: It has been an incredible journey; we have been rebuilding the plane as we’ve been flying it with customers onboard, and this would not have happened without the support of AWS leadership, but most importantly the tremendous engineers, managers, and product people who have worked on the team.

    As we did in the paper, I want to recognize the contributions of Nate Binkert and Britt Johnson, who have passed, but whose words of wisdom continue to guide us. We’ve taken data warehousing, what we learned from books in school (Ippokratis earned his PhD in electrical and computer engineering from Carnegie Mellon University) and brought it to the cloud. In the process, we’ve been able to innovate, and write new pages in the book. I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning and generative AI background, to focus on the development of software development skills of Nova foundational models. As a Principal Applied Scientist, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically strong and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
US, VA, Arlington
Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, WA, Seattle
Have you ever wondered what it takes to transform millions of manual network planning decisions into AI-powered precision? Network Planning Solutions is looking for scientific innovators obsessed with building the AI/ML intelligence that makes orchestrating complex global operations feel effortless. Here, you'll do more than just build models; you'll create 'delight' by discovering and deploying the science that delivers exactly what our customers need, right when they need it. If you're ready to transform complex data patterns into breakthrough AI capabilities that power intuitive human experiences, you've found your team. Network Planning Solutions architects and orchestrates Amazon's customer service network of the future. By building AI-native solutions that continuously learn, predict and optimize, we deliver seamless customer experiences and empower associates with high-value work—driving measurable business impact at a global scale. As a Sr. Manager, Applied Science, you will own the scientific innovation and research initiatives that make this vision possible. You will lead a team of applied scientists and collaborate with cross-functional partners to develop and implement breakthrough scientific solutions that redefine our global network. Key job responsibilities Lead AI/ML Innovation for Network Planning Solutions: - Develop and deploy production-ready demand forecasting algorithms that continuously sense and predict customer demand using real-time signals - Build network optimization algorithms that automatically adjust staffing as conditions evolve across the service network - Architect scalable AI/ML infrastructure supporting automated forecasting and network optimization capabilities across the system Drive Scientific Excellence: - Build and mentor a team of applied scientists to deliver breakthrough AI/ML solutions - Design rigorous experiments to validate hypotheses and quantify business impact - Establish scientific excellence mechanisms including evaluation metrics and peer review processes Enable Strategic Transformation: - Drive scientific innovation from research to production - Design and validate next-generation AI-native models while ensuring robust performance, explainability, and seamless integration with existing systems. - Partner with Engineering, Product, and Operations teams to translate AI/ML capabilities into measurable business outcomes - Navigate ambiguity through experimentation while balancing innovation with operational constraints - Influence senior leadership through scientific rigor, translating complex algorithms into clear business value A day in the life Your day will be a dynamic blend of scientific innovation and strategic problem-solving. You'll collaborate with cross-functional teams, design AI algorithms, and translate complex data patterns into intuitive solutions that drive meaningful business impact. About the team We are Network Planning Solutions, a team of scientific innovators dedicated to reshaping how global service networks operate. Our mission is to create AI-native solutions that continuously learn, predict, and optimize customer experiences. We empower our associates to tackle high-value challenges and drive transformative change at a global scale.
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Creative X team within Amazon Advertising time aims to democratize access to high-quality creatives (audio, images, videos, text) by building AI-driven solutions for advertisers. To accomplish this, we are investing in understanding how best users can leverage Generative AI methods such as latent-diffusion models, large language models (LLM), generative audio (music and speech synthesis), computer vision (CV), reinforced learning (RL) and related. As an Applied Scientist you will be part of a close-knit team of other applied scientists and product managers, UX and engineers who are highly collaborative and at the top of their respective fields. We are looking for talented Applied Scientists who are adept at a variety of skills, especially at the development and use of multi-modal Generative AI and can use state-of-the-art generative music and audio, computer vision, latent diffusion or related foundational models that will accelerate our plans to generate high-quality creatives on behalf of advertisers. Every member of the team is expected to build customer (advertiser) facing features, contribute to the collaborative spirit within the team, publish, patent, and bring SOTA research to raise the bar within the team. As an Applied Scientist on this team, you will: - Drive the invention and development of novel multi-modal agentic architectures and models for the use of Generative AI methods in advertising. - Work closely and integrate end-to-end proof-of-concept Machine Learning projects that have a high degree of ambiguity, scale and complexity. - Build interface-oriented systems that use Machine Learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Curate relevant multi-modal datasets. - Perform hands-on analysis and modeling of experiments with human-in-the-loop that eg increase traffic monetization and merchandise sales, without compromising the shopper experience. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Mentor and help recruit Applied Scientists to the team. - Present results and explain methods to senior leadership. - Willingness to publish research at internal and external top scientific venues. - Write and pursue IP submissions. Key job responsibilities This role is focused on developing new multi-modal Generative AI methods to augment generative imagery and videos. You will develop new multi-modal paradigms, models, datasets and agentic architectures that will be at the core of advertising-facing tools that we are launching. You may also work on development of ML and GenAI models suitable for advertising. You will conduct literature reviews to stay on the SOTA of the field. You will regularly engage with product managers, UX designers and engineers who will partner with you to productize your work. For reference see our products: Enhanced Video Generator, Creative Agent and Creative Studio. A day in the life On a day-to-day basis, you will be doing your independent research and work to develop models, you will participate in sprint planning, collaborative sessions with your peers, and demo new models and share results with peers, other partner teams and leadership. About the team The team is a dynamic team of applied scientists, UX researchers, engineers and product leaders. We reside in the Creative X organization, which focuses on creating products for advertisers that will improve the quality of the creatives within Amazon Ads. We are open to hiring candidates to work out of one of the following locations: UK (London), USA (Seattle).
US, WA, Bellevue
The Amazon Fulfillment Technologies (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We tackle a wide range of challenges throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. Our mission is to develop innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run optimally and continuously (from every few minutes to every few hours) across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions that directly impact process efficiency and associate experience in the fulfillment network. Your key responsibilities include: - Develop deep understanding and domain knowledge of operational processes, system architecture, and business requirements - Dive deep into data and code to identify opportunities for continuous improvement and disruptive new approaches - Design and develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and emerging challenges - Create prototypes and simulations for agile experimentation of proposed solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with software engineers to integrate prototypes into production systems - Design and execute experiments to test new or incremental solutions launched in production - Build and monitor metrics to track solution performance and business impact About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team brings expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM, combined with deep domain knowledge of operational processes within FCs and their unique challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Our production systems rely on a diverse set of technologies, and our teams invest in multiple specialties as the needs of each focus area evolve.
US, WA, Seattle
We are looking for an exceptional applied scientist to join the AWS Applied AI Life Sciences organization. You will invent, implement, and deploy state of the art machine learning algorithms and intelligent AI systems to solve complex problems in healthcare and life sciences area, making a meaningful impact on patient lives. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities - Design, develop, and deploy novel Agentic systems and ML solutions for complex healthcare and life sciences challenges - Navigate ambiguity and create clarity in early-stage product development - Collaborate with product managers, engineers, and domain experts to transform research into production-quality features - Mentor junior scientists and participate in tactical and strategic planning A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. About the team We are a multidisciplinary team of product managers, engineers, scientists, and domain experts working at the intersection of AI/ML and healthcare. We leverage AWS's expertise in secure, scalable cloud computing and applied AI to solve complex challenges in healthcare and life sciences. Our team values customer obsession, technical excellence, innovation, and a commitment to improving patient outcomes through technology.
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist II, with a strong background in Machine Learning and Generative AI to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers' shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search, image recognition, and multi-modal AI to deliver significant impact for the business. In addition, you will be at the forefront of leveraging Generative AI (GenAI) technologies, including Large Language Models (LLMs) and foundation models, to drive advanced language understanding, creative ad content generation, and retrieval-augmented generation (RAG). You will also design and build agentic AI systems capable of autonomous, multi-step reasoning, tool use, and chain-of-thought decision-making, while applying techniques such as prompt engineering, fine-tuning, RLHF (Reinforcement Learning from Human Feedback), and embedding-based retrieval to develop scalable, production-grade solutions. Ideal candidates will have hands-on experience fine-tuning, evaluating, and deploying LLMs at scale, along with a strong understanding of emerging GenAI paradigms including agentic workflows and responsible AI practices. You should be able to work cross-functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists, guiding them to deliver high-impact products and services for Amazon customers and sellers, and fostering a culture of innovation around the latest advancements in Generative AI and LLM technologies. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist II on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs