Amazon Redshift re-invented research paper and photos of Rahul Pathak, vice president of analytics at AWS, and Ippokratis Pandis, AWS senior principal engineer
The "Amazon Redshift re-invented" research paper will be presented at a leading database conference next month. Two of the paper's authors, Rahul Pathak (top right), vice president of analytics at AWS, and Ippokratis Pandis (bottom right), an AWS senior principal engineer, discuss the origins of Redshift, how the system has evolved in the past decade, and where they see the service evolving in the years ahead.

Amazon Redshift: Ten years of continuous reinvention

Two authors of Amazon Redshift research paper that will be presented at leading international forum for database researchers reflect on how far the first petabyte scale cloud data warehouse has advanced since it was announced ten years ago.

Nearly ten years ago, in November 2012 at the first-ever Amazon Web Services (AWS) re:Invent, Andy Jassy, then AWS senior vice president, announced the preview of Amazon Redshift, the first fully managed, petabyte-scale cloud data warehouse. The service represented a significant leap forward from traditional on-premises data warehousing solutions, which were expensive, inflexible, and required significant human and capital resources to operate.

In a blog post on November 28, 2012, Werner Vogels, Amazon chief technical officer, highlighted the news: “Today, we are excited to announce the limited preview of Amazon Redshift, a fast and powerful, fully managed, petabyte-scale data warehouse service in the cloud.”

Further in the post, Vogels added, “The result of our focus on performance has been dramatic. Amazon.com’s data warehouse team has been piloting Amazon Redshift and comparing it to their on-premise data warehouse for a range of representative queries against a two billion row data set. They saw speedups ranging from 10x – 150x!”

That’s why, on the day of the announcement, Rahul Pathak, then a senior product manager, and the entire Amazon Redshift team were confident the product would be popular.

“But we didn’t really understand how popular,” he recalls.

“At preview we asked customers to sign up and give us some indication of their data volume and workloads,” Pathak, now vice president of Relational Engines at AWS, said. “Within about three days we realized that we had ten times more demand for Redshift than we had planned for the entire first year of the service. So we scrambled right after re:Invent to accelerate our hardware orders to ensure we had enough capacity on the ground for when the product became generally available in early 2013. If we hadn’t done that preview, we would have been caught short.”

The Redshift team has been sprinting to keep apace of customer demand ever since. Today, the service is used by tens of thousands of customers to process exabytes of data daily. In June a subset of the team will present the paper “Amazon Redshift re-invented ” at a leading international forum for database researchers, practitioners, and developers, the ACM SIGMOD/PODS Conference in Philadelphia.

Related content
Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

The paper highlights four key areas where Amazon Redshift has evolved in the past decade, provides an overview of the system architecture, describes its high-performance transactional storage and compute layers, details how smart autonomics are provided, and discusses how AWS and Redshift make it easy for customers to use the best set of services to meet their needs.

Amazon Science recently connected with two of the paper’s authors, Pathak, and Ippokratis Pandis, an AWS senior principal engineer, to discuss the origins of Redshift, how the system has evolved over the past decade, and where they see the service evolving in the years ahead.

  1. Q. 

    Can you provide some background on the origin story for Redshift? What were customers seeking, and how did the initial version address those needs?

    A. 

    Rahul: We had been meeting with customers who in the years leading up to the launch of Amazon Redshift had moved just about every workload they had to the cloud except for their data warehouse. In many cases, it was the last thing they were running on premises, and they were still dealing with all of the challenges of on-premises data warehouses. They were expensive, had punitive licensing, were hard to scale, and customers couldn’t analyze all of their data. Customers told us they wanted to run data warehousing at scale in the cloud, that they didn’t want to compromise on performance or functionality, and that it had to be cost-effective enough for them to analyze all of their data.

    So, this is what we started to build, operating under the code name Cookie Monster. This was at a time when customers’ data volumes were exploding, and not just from relational databases, but from a wide variety of sources. One of our early private beta customers tried it and the results came back so fast they thought the system was broken. It was about 10 to 20 times faster than what they had been using before. Another early customer was pretty unhappy with gaps in our early functionality. When I heard about their challenges, I got in touch, understood their feedback, and incorporated it into the service before we made it generally available in February 2013. This customer soon turned into one of our biggest advocates.

    When we launched the service and announced our pricing at $1000 a terabyte per year, people just couldn’t believe we could offer a product with that much capability at such a low price point. The fact that you could provision a data warehouse in minutes instead of months also caught everyone’s attention. It was a real game-changer for this industry segment.

    Ippokratis: I was at IBM Research at the time working on database technologies there, and we recognized that providing data warehousing as a cloud service was a game changer. It was disruptive. We were working with customers’ on-premises systems where it would take us several days or weeks to resolve an issue, whereas with a cloud data warehouse like Redshift, it would take minutes. It was also apparent that the rate of innovation would accelerate in the cloud.

    In the on-premises world, it was taking months if not years to get new functionality into a software release, whereas in the cloud new capabilities could be introduced in weeks, without customers having to change a single line of code in their consuming applications. The Redshift announcement was an inflection point; I got really interested in the cloud, and cloud data warehouses, and eventually joined Amazon [Ippokratis joined the Redshift team as a principal engineer in Oct. 2015].

  2. Q. 

    How has Amazon Redshift evolved over the past decade since the launch nearly 10 years ago?

    A. 

    Ippokratis: As we highlight in the paper, the service has evolved at a rapid pace in response to customers’ needs. We focused on four main areas: 1) customers’ demand for high-performance execution of increasingly complex analytical queries; 2) our customers’ need to process more data and significantly increase the number of users who need to derive insights from that data; 3) customers’ need for us to make the system easier to use; and 4) our customers’ desire to integrate Redshift with other AWS services, and the AWS ecosystem. That’s a lot, so we’ll provide some examples across each dimension.

    Related publication
    Enterprise companies use spatial data for decision optimization and gain new insights regarding the locality of their business and services. Industries rely on efficiently combining spatial and business data from different sources, such as data warehouses, geospatial information systems, transactional systems, and data lakes, where spatial data can be found in structured or unstructured form. In this demonstration

    Offering the leading price performance has been our primary focus since Rahul first began working on what would become Redshift. From the beginning, the team has focused on making core query execution latency as low as possible so customers can run more workloads, issue more jobs into the system, and run their daily analysis. To do this, Redshift generates C++ code that is highly optimized and then sends it to the distributor in the parallel database and executes this highly optimized code. This makes Redshift unique in the way it executes queries, and it has always been the core of the service.

    We have never stopped innovating here to deliver our customers the best possible performance. Another thing that’s been interesting to me is that in the traditional business intelligence (BI) world, you optimize your system for very long-running jobs. But as we observe the behavior of our customers in aggregate, what’s surprising is that 90 percent of our queries among the billions we run daily in our service execute in less than one second. That’s not what people had traditionally expected from a data warehouse, and that has changed the areas of the code that we optimize.

    Rahul: As Ippokratis mentioned, the second area we focused on in the paper was customers’ need to process more data and to use that data to drive value throughout the organization. Analytics has always been super important, but eight or ten years ago it wasn’t necessarily mission critical for customers in the same way transactional databases were. That has definitely shifted. Today, core business processes rely on Redshift being highly available and performant. The biggest architectural change in the past decade in support of this goal was the introduction of Redshift Managed Storage, which allowed us to separate compute and storage, and focus a lot of innovation in each area.

    Diagram of the Redshift Managed Storage
    The Redshift managed storage layer (RMS) is designed for a durability of 99.999999999% and 99.99% availability over a given year, across multiple availability zones. RMS manages both user data as well as transaction metadata.

    Another big trend has been the desire of customers to query across and integrate disparate datasets. Redshift was the first data warehouse in the cloud to query Amazon S3 data, that was with Redshift Spectrum in 2017. Then we demonstrated the ability to run a query that scanned an exabyte of data in S3 as well as data in the cluster. That was a game changer.

    Customers like NASDAQ have used this extensively to query data that’s on local disk for the highest performance, but also take advantage of Redshift’s ability to integrate with the data lake and query their entire history of data with high performance. In addition to querying the data lake, integrated querying of transactional data stores like Aurora and RDS has been another big innovation, so customers can really have a high-performance analytics system that’s capable of transparently querying all of the data that matters to them without having to manage these complex integration processes that other systems require.

    Illustration of how a query flows through Redshift.
    This diagram from the research paper illustrates how a query flows through Redshift. The sequence is described in detail on pages 2 and 3 of the paper.

    Ippokratis: The third area we focused on in the paper was ease of use. One change that stands out for me is that on-premises data warehousing required IT departments to have a DBA (data base administrator) who would be responsible for maintaining the environment. Over the past decade, the expectation from customers has evolved. Now, if you are offering data warehousing as a service, the systems must be capable of auto tuning, auto healing, and auto optimizing. This has become a big area of focus for us where we incorporate machine learning and automation into the system to make it easier to use, and to reduce the amount of involvement required of administrators.

    Rahul: In terms of ease of use, three innovations come to mind. One is concurrency scaling. Similar to workload management, customers would previously have to manually tweak concurrency or reset clusters of the manually split workloads. Now, the system automatically provisions new resources and scales up and down without customers having to take any action. This is a great example of how Redshift has gotten much more dynamic and elastic.

    The second ease of use innovation is automated table optimization. This is another place where the system is able to observe workloads and data layouts and automatically suggest how data should be sorted and distributed across nodes in the cluster. This is great because it’s a continuously learning system so workloads are never static in time.

    Related publication
    How should we split data among the nodes of a distributed data warehouse in order to boost performance for a forecasted workload? In this paper, we study the effect of different data partitioning schemes on the overall network cost of pairwise joins. We describe a generally-applicable data distribution framework initially designed for Amazon Redshift, a fully-managed petabyte-scale data warehouse in the

    Customers are always adding more datasets, and adding more users, so what was optimal yesterday might not be optimal tomorrow. Redshift observes this and modifies what's happening under the covers to balance that. This was the focus of a really interesting graph optimization paper that we wrote a few years ago about how to analyze for optimal distribution keys for how data is laid out within a multi-node parallel-processing system. We've coupled this with automated optimization and then table encoding. In an analytics system, how you compress data has a big impact because the less data you scan, the faster your queries go. Customers had to reason about this in the past. Now Redshift can automatically determine how to encode data correctly to deliver the best possible performance for the data and the workload.

    The third innovation I want to highlight here is Amazon Redshift Serverless, which we launched in public preview at re:Invent last fall. Redshift Serverless removes all of the management of instances and clusters, so customers can focus on getting to insights from data faster and not spend time managing infrastructure. With Redshift Serverless, customers can simply provision an endpoint and begin to interact with their data, and Redshift Serverless will auto scale and automatically manage the system to essentially remove all of that complexity from customers.

    Customers can just focus on their data, set limits to manage their budgets, and we deliver optimal performance between those limits. This is another massive step forward in terms of ease of use because it eliminates any operations for customers. The early response to the preview has been tremendous. Thousands of customers have been excited to put Amazon Redshift Serverless through its paces over the past few months, and we’re excited about making it generally available in the near future.

    Amazon Redshift architecture diagram
    The Amazon Redshift architecture as presented in the research paper.

    Ippokratis: A fourth area of focus in the paper is on integration with other AWS services, and the AWS ecosystem. Integration is another area where customer behavior has evolved from traditional BI use cases. Today, cloud data warehouses are a central hub with tight integration with a broader set of AWS services. We provided the ability for customers to join data from the warehouse with the data lake. Then customers said they needed access to high-velocity business data in operational databases like Aurora and RDS, so we provided access to these operational data stores. Then we added support for streams, as well as integration with SageMaker and Lambda so customers can run machine learning training and inference without moving their data, and do generic compute. As a result, we’ve converted the traditional BI system into a well-integrated set of AWS services.

    Rahul: One big area of integration has been with our machine-learning ecosystem. With Redshift ML we have enabled anyone who knows SQL to take advantage of all of our machine-learning innovation. We built the ability to create a model from the SQL prompt, which gets the data into Amazon S3 and calls Amazon SageMaker, to use automated machine learning to build the most appropriate model to provide predictions on the data.

    This model is compiled efficiently and brought back into the data warehouse for customers to run very high-performance parallel inferences with no additional compute or no extra cost. The beauty of this integration is that every innovation we make within SageMaker means that Redshift ML gets better as well. This is just another means by which customers benefit from us connecting our services together.

    Related content
    Amazon researchers describe new method for distributing database tables across servers.

    Another big area for integration has been data sharing. Once we separated storage and compute layers with RA3 instances, we could enable data sharing, giving customers the ability to share data with clusters in the same account, and other accounts, or across regions. This allows us to separate consumers from producers of data, which enables things like modern data mesh architectures. Customers can share data without data copying, so they are transactionally consistent across accounts.

    For example, users within a data-science organization can securely work from the shared data, as can users within the reporting or marketing organization. We’ve also integrated data sharing with AWS Data Exchange, so now customers can search for — and subscribe to — third-party datasets that are live, up to date, and can be queried immediately in Redshift. This has been another game changer from the perspective of setting data free, enabling data monetization for third-party providers, and secure and live data access and licensing for subscribers for high-performance analytics within and across organizations. The fact that Redshift is part of an incredibly rich data ecosystem is a huge win for customers, and in keeping with customers’ desire to make data more pervasively available across the company.

  3. Q. 

    You indicate in the paper that Redshift innovation is continuing at an accelerated pace.  How do you see the cloud data warehouse segment evolving – and more specifically Redshift – over the next several years?

    A. 

    Rahul: A few things will continue to be true as we head into the future. Customers will be generating ever more amounts of data, and they’re going to want to analyze that data more cost effectively. Data volumes are growing exponentially, but obviously customers don't want their costs growing exponentially. This requires that we continue to innovate, and find new levels of performance to ensure that the cost of processing a unit of data continues to go down.

    We’ll continue innovating in software, in hardware, in silicon, and in using machine learning to make sure we deliver on that promise for customers. We’ve delivered on that promise for the past 10 years, and we’ll focus on making sure we deliver on that promise into the future.

    I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.
    Ippokratis Pandis

    Also, customers are always going to want better availability, they’re always going to want their data to be secure, and they’re always going to want more integrations with more data sources, and we intend to continue to deliver on all of those. What will stay the same is our ability to offer the-best in-segment price performance and capabilities, and the best-in-segment integration and security because they will always deliver value for customers.

    Ippokratis: It has been an incredible journey; we have been rebuilding the plane as we’ve been flying it with customers onboard, and this would not have happened without the support of AWS leadership, but most importantly the tremendous engineers, managers, and product people who have worked on the team.

    As we did in the paper, I want to recognize the contributions of Nate Binkert and Britt Johnson, who have passed, but whose words of wisdom continue to guide us. We’ve taken data warehousing, what we learned from books in school (Ippokratis earned his PhD in electrical and computer engineering from Carnegie Mellon University) and brought it to the cloud. In the process, we’ve been able to innovate, and write new pages in the book. I’m very proud of what the team has accomplished, but equally as excited about all the things we’re going to do to improve Redshift in the future.

Research areas

Related content

TW, TPE, Hsinchu City
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD or Master students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions during vacation, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 9am-6pm. Specific team norms around working hours will be communicated by your manager. Interns should not have other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for biology. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. Key job responsibilities As an Applied Science, you will have access to large datasets with billions of images and video to build large-scale machine learning systems. Additionally, you will analyze and model terabytes of text, images, and other types of data to solve real-world problems and translate business and functional requirements into quick prototypes or proofs of concept. We are looking for smart scientists capable of using a variety of domain expertise combined with machine learning and statistical techniques to invent, design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! Prime Air is seeking an experienced Applied Science Manager to help develop our advanced Navigation algorithms and flight software applications. In this role, you will lead a team of scientists and engineers to conduct analyses, support cross-functional decision-making, define system architectures and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. This person must be comfortable working with a team of top-notch software developers and collaborating with our science teams. We’re looking for someone who innovates, and loves solving hard problems. You will work hard, have fun, and make history! Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, VA, Herndon
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As an Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences and inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, TX, Austin
Our team is involved with pre-silicon design verification for custom IP. A critical requirement of the verification flow is the requirement of legal and realistic stimulus of a custom Machine Learning Accelerator Chip. Content creation is built using formal methods that model legal behavior of the design and then solving the problem to create the specific assembly tests. The entire frame work for creating these custom tests is developed using a SMT solver and custom software code to guide the solution space into templated scenarios. This highly visible and innovative role requires the design of this solving framework and collaborating with design verification engineers, hardware architects and designers to ensure that interesting content can be created for the projects needs. Key job responsibilities Develop an understanding for a custom machine learning instruction set architecture. Model correctness of instruction streams using first order logic. Create custom API's to allow control over scheduling and randomness. Deploy algorithms to ensure concurrent code is safely constructed. Create coverage metrics to ensure solution space coverage. Use novel methods like machine learning to automate content creation. About the team Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for customers who require specialized security solutions for their cloud services. Annapurna Labs (our organization within AWS UC) designs silicon and software that accelerates innovation. Customers choose us to create cloud solutions that solve challenges that were unimaginable a short time ago—even yesterday. Our custom chips, accelerators, and software stacks enable us to take on technical challenges that have never been seen before, and deliver results that help our customers change the world. About AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
CN, 11, Beijing
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:北京朝阳区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML或搜索领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊的International Technology搜索团队改善Amazon的产品搜索服务。我们的目标是帮助亚马逊的客户找到他们所需的产品,并发现他们感兴趣的新产品。 这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些模型到搜索引擎中为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
CN, 44, Shenzhen
职位:Applied scientist 应用科学家实习生 毕业时间:2026年10月 - 2027年7月之间毕业的应届毕业生 · 入职日期:2026年6月及之前 · 实习时间:保证一周实习4-5天全职实习,至少持续3个月 · 工作地点:深圳福田区 投递须知: 1 填写简历申请时,请把必填和非必填项都填写完整。提交简历之后就无法修改了哦! 2 学校的英文全称请准确填写。中英文对应表请查这里(无法浏览请登录后浏览)https://docs.qq.com/sheet/DVmdaa1BCV0RBbnlR?tab=BB08J2 如果您正在攻读计算机,AI,ML领域专业的博士或硕士研究生,而且对应用科学家的实习工作感兴趣。如果您也喜爱深入研究棘手的技术问题并提出解决方案,用成功的产品显著地改善人们的生活。 那么,我们诚挚邀请您加入亚马逊。这会是一份收获满满的工作。您每天的工作都与全球数百万亚马逊客户的体验紧密相关。您将提出和探索创新,基于TB级别的产品和流量数据设计机器学习模型。您将集成这些为客户提供服务,通过数据,建模和客户反馈来完成闭环。您对模型的选择需要能够平衡业务指标和响应时间的需求。
LU, Luxembourg
Join our team as an Applied Scientist II where you'll develop innovative machine learning solutions that directly impact millions of customers. You'll work on ambiguous problems where neither the problem nor solution is well-defined, inventing novel scientific approaches to address customer needs at the project level. This role combines deep scientific expertise with hands-on implementation to deliver production-ready solutions that drive measurable business outcomes. Key job responsibilities Invent: - Design and develop novel machine learning models and algorithms to solve ambiguous customer problems where textbook solutions don't exist - Extend state-of-the-art scientific techniques and invent new approaches driven by customer needs at the project level - Produce internal research reports with the rigor of top-tier publications, documenting scientific findings and methodologies - Stay current with academic literature and research trends, applying latest techniques when appropriate Implement: - Write production-quality code that meets or exceeds SDE I standards, ensuring solutions are testable, maintainable, and scalable - Deploy components directly into production systems supporting large-scale applications and services - Optimize algorithm and model performance through rigorous testing and iterative improvements - Document design decisions and implementation details to enable reproducibility and knowledge transfer - Contribute to operational excellence by analyzing performance gaps and proposing solutions Influence: - Collaborate with cross-functional teams to translate business goals into scientific problems and metrics - Mentor junior scientists and help new teammates understand customer needs and technical solutions - Present findings and recommendations to both technical and non-technical stakeholders - Contribute to team roadmaps, priorities, and strategic planning discussions - Participate in hiring and interviewing to build world-class science teams
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.