Michael Kearns and Aaron Roth seated at a table in front of a large chalk board.
Michael Kearns, left, and Aaron Roth, right, are the co-authors ofThe Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns and Roth are leading researchers in machine learning, University of Pennsylvania computer science professors, and Amazon Scholars.
University of Pennsylvania

Amazon Scholars Michael Kearns and Aaron Roth discuss the ethics of machine learning

Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

In November of 2019, University of Pennsylvania computer science professors Michael Kearns and Aaron Roth released The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns is the founding director of the Warren Center for Network and Data Sciences, and the faculty founder and former director of Penn Engineering’s Networked and Social Systems Engineering program. Roth is the co-director of Penn’s program in Networked and Social Systems Engineering and co-authored The Algorithmic Foundations of Differential Privacy with Cynthia Dwork. Kearns and Roth are leading researchers in machine learning, focusing on both the design and real-world application of algorithms.

Their book’s central thesis, which involves “the science of designing algorithms that embed social norms such as fairness and privacy into their code,” was already pertinent when the book was released. Fast forward one year, and the book’s themes have taken on even greater significance.

Amazon Science sat down with Kearns and Roth, both of whom recently became Amazon Scholars, to find out whether the events of the past year have influenced their outlook. We talked about what it means to define and pursue fairness, how differential privacy is being applied in the real world and what it can achieve, the challenges faced by regulators, what advice the two University of Pennsylvania professors would give to students studying artificial intelligence and machine learning, and much more.

Q. How has the narrative around designing socially aware algorithms evolved in the past year, and have the events of the past year altered your outlooks in any way?

Aaron Roth: The main thesis of our book, which is that in any particular problem you have to start by thinking carefully about what you want in terms of fairness or privacy or some other social desideratum, and then how you relatively value things like that compared to other things you might care about, such as accuracy—that fundamental thesis hasn't really changed.

Now with the coronavirus pandemic, what we have seen are application areas where how you want to manage the trade-off between accuracy and privacy, for example, is more extreme than we usually see. So, for example, in the midst of an outbreak, contact tracing might be really important, even though you can't really do contact tracing while protecting individual privacy. Because of the urgency of the situation, you might decide to trade off privacy for accuracy. But because the message of our book really is about thinking things through on a case-by-case basis, the thesis itself hasn't changed.

Michael Kearns: The events of the last year, in particular coronavirus, the resulting restrictions on society and the tensions around these restrictions, and all of the recent social upheaval in the United States, clearly has made the topics of our book much more relevant. The book has focused a lot of attention on the use of algorithms for both good and bad purposes, including things like contact tracing or releasing statistics about people's movements or health data, as well as the use of machine learning, AI, and algorithms more generally for applications like surveillance.

Since our book, at a high level, is about the tensions that arise when there's a battle between social norms like equality or privacy and the use of algorithms for optimizing things like performance or error, I don't think anything in the last year has changed our thinking about the technical aspects of these problems. It's clear that society has been forced to face these problems in a very direct way because of the events of the last year, in a way that we really haven't before. In that sense, our timing was very fortunate because the things we're talking about are more relevant now than ever.

Q. How does that affect your ability to define fairness? Is that something that can ever be a fixed definition, or does it need to be adjusted as events or specific use cases dictate?

Kearns: There's not one correct definition of fairness. In every application you have to think about who the parties are that you're trying to protect, and what the harms are that you're trying to protect them from. That changes both over time and in different scenarios.

Roth: Even before the events of the last year, fairness was always a very context- and beholder- dependent notion. One society might be primarily concerned about fairness by race, and another might be primarily concerned about fairness by gender, and a different community might have other norms. The events of the last year have highlighted cases in which not only will things vary over space or communities, but also over time.

People's attitudes about relatively invasive technologies like contact tracing might be quite different now than they were a year ago. If a year ago I told you, “Suppose there was some disease that some people were catching and the most effective way of tamping it down was to do contact tracing.” Many people might have said, “That sounds really invasive to me”, but now that we've all been through one of the alternatives—being on lock down for six months—people's minds might be changed. We’ve definitely seen norms around privacy for health-related data change.

Q. Standard setting bodies have a significant challenge when it comes to auditing algorithms. Given the scope of that challenge, what needs to happen to allow those groups to do that effectively?

Roth: Although it hasn't happened yet, regulatory agencies are thinking about this, and are reaching out to people like us to help them think about doing this in the right way. I don't know of any regulatory agency that is ready yet to audit algorithms at-scale in sensible ways of the technical sort we discuss in the book. But there are regulatory agencies that have gotten the idea that they should be gearing up to do this, and those agencies have started preliminary movements in that direction.

Kearns: Many of the conversations we've had with standard setting bodies make it clear they're realizing that, collectively, they've technologically fallen behind the industries that they regulate. They don't have the right resources or personnel to do some of the more technological types of auditing. But in these conversations, it's also become clear to us that, even if you could snap your fingers and get the right people and the right resources, it will only be part of a broader framework.

Other important pieces involve becoming more precise about best practices, and also thinking carefully about what those specifications should look like. Let me give a concrete example: One of the things that we argue in our book is that there are many laws and regulations in areas like consumer finance, for instance, that try to get at fairness by restricting what kinds of inputs an algorithm can use. These laws and regulations say, “In order to make sure that your model isn't racially discriminatory, you must not use race as a variable.” But, in fact, not using race as a variable is no guarantee that you won't build a model that's discriminatory by race. In fact, it can actually exacerbate that problem. What we advocate in the book is, rather than restricting the inputs, you should specify the behavior you want as outputs. So instead of saying, “Don't use race”, say instead, “The outputs of the models shouldn't be discriminatory by race.”

Q. Differential privacy has progressed from theoretical to applied science in significant ways in the past few years. How is differential privacy being utilized? How does that help balance the trade-off between privacy and accuracy?

Roth: In the last five years or so, differential privacy has gone from an academic topic to a real technology. For example, the 2020 US Decennial Census is going to release all of its statistical products for the first time, subject to the protections of differential privacy. This is because, by law, the Census is required to protect the privacy of the people it is surveying. The ad hoc techniques used in previous decades to protect the statistics have been shown not to work.

I think that what we will see is that the statistics that the Census releases this year will be more protective of the privacy of Americans. However, in the theme of trade off, using rigorous privacy protections is not without cost. Certain kinds of analyses, such as detailed demographic studies that rely on having highly granular Census data, might now be unavailable under differential privacy. We've seen this play out in the public sphere between downstream users of the data and folks at Census who actually have to hammer out the details.

We've seen other interesting uses of differential privacy during the pandemic too. Some tech companies have utilized differential privacy when releasing statistics about personal mobility data gathered during the pandemic. What differential privacy is best at is releasing those kinds of population level statistics: It's exactly designed to prevent you from learning too much about any particular individual. If you want to know how much less people are moving around different cities because of coronavirus restrictions, these data sets let you answer that question without giving up too much privacy for individuals whose mobile devices were providing the data at the most granular level.

Q. So how does differential privacy help protect individual information?

Roth: Oftentimes the things that you will most naturally want to know about a data set are not facts about particular people, but are population level aggregates like, how many people are crowded into my supermarket at 6 a.m. when it opens. If you tell me sufficiently many aggregate statistics, I can do some math and back out particular people's data from that. The fact that aggregate statistics can be disclosive about individual people's data is an unfortunate accident that actually doesn't have too much to do with what you really wanted to learn.

At its most basic level, differential privacy does things like add little bits of noise to the statistics that you're releasing so that what you're telling me is not the exact number of people who were in my local supermarket at 6 a.m., but roughly the number of people who were in the supermarket plus or minus some small number of people. The fortunate mathematical fact is that you can add amounts of noise that are relatively small that still allow you to get good estimates, but are sufficient to wash out the contributions of particular people, making it impossible to learn too much about any particular individual. It lets you get access to these population level questions that you were curious about without incidentally or accidentally learning about particular people, which is the dangerous side.

"We are bullish about algorithms"
Michael Kearns and Aaron Roth talked to Oxford Academic about the future of AI.

Kearns: To make this slightly more concrete, say what I want to do is each day tell everybody how many people were in the supermarket a couple blocks from me at 1 p.m. If you happened to be at that supermarket at one o’clock, then your GPS data is one of the data points that goes into the count. You may consider your presence at supermarket at 1 p.m. to be the kind of private information that you don't want the whole world to know. So then let's say that, on a typical day, there might be a couple hundred people at the supermarket, but that I add a number which is an order of magnitude, plus or minus 25. The addition of that random number mathematically and provably obscures any individual’s contributions to that count. I won't be able to look at that count and try to figure out any particular person who was present. If I add a number that's between minus 25 and 25, I can't affect the overall count by 100. I'll still have an accurate count up to some resolution, but I will have provided privacy to everybody who was present at the supermarket and, actually, all the people who weren't present as well.

Q. How are topics like fairness, accountability, transparency, interpretability, and privacy showing up in computer science curriculum at Penn and elsewhere within higher education?

Kearns: When Aaron and I first started working on the technical aspects of fairness in machine learning and related topics, it was pretty sparsely populated. This was maybe six or seven years ago, and there weren't many papers on the topics. There were some older ones, more from the statistics literature, but there wasn't really a community of any size within machine learning that thought about these problems. On the research side, the opposite is now true. All of the major machine learning conferences have significant numbers of papers and workshops on these topics; they have workshops devoted to these topics. There are now standalone conferences about fairness, accountability, and explainability in machine learning that are growing every year. It's a very vibrant, active research community now. Additionally, even though it's still early, it's an important enough topic that there are now starting to be efforts to teach this even at the undergraduate level.

The last two years at Penn, for example, I have piloted a course called The Science of Data Ethics. It’s deliberately called that and not The Ethics of Data Science. What that represents is that it’s about the science of making algorithms that are more ethical by different norms, like fairness and privacy. It's not your typical engineering ethics course, which at some level is meant to teach you to be a good, responsible person in that you look at case studies where things went wrong and you talk about what you would do differently. This class is a science class. It says: Here are the standard principles of machine learning, here's how those standard principles can lead to discriminatory behavior in my predictive models, and here are alternate principles, or modifications of those principles and the algorithms that implement them, that avoid or mitigate that behavior.

Q. Is there a more multidisciplinary approach to this set of challenges?

Roth: It's definitely a multidisciplinary area. At Penn, we've been actively collaborating with interested folks in the law school and the criminology department. So far, we don't really have interdisciplinary undergraduate courses on these topics. Those courses would be good in the long run, but at the research and graduate level we've been having interdisciplinary conversations for a number of years.

In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline.
Michael Kearns

Kearns: Not just at the teaching level, but even in the research community, there's a real melting pot of viewpoints on these topics. Even though our book is focused on the scientific aspects of these issues, we do spend some time mentioning the fact that the science will only take us so far. In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline. Machine learning begins with data and ends with a model. But upstream from the data is the entire manner in which the data was collected and the conditions under which it was collected.

One of the things that's very interesting, exciting, and necessary about the dialogue around these kinds of issues is that, even when there's quite a bit to say on them scientifically, you don't want to just put your head down and look at the science. You want to talk to people who are upstream and downstream from the machine learning part of this pipeline because they bring very different perspectives, and can often point out perspectives which can help you change the way you look at things scientifically in a positive way.

Q. If I were a student exploring AI or ML and I wanted to influence this particular conversation, beyond technical skills, what kind of skills should I be developing?

Kearns: What I would very strongly advocate is: think widely, think broadly, think big. Yes, you're going to be doing technical work in particular models and frameworks, and you know you want to get results in those frameworks. But also read what people who are from very, very different fields think about these problems. Go to their conferences, don't just go to the machine learning conferences and to the sub-track on fairness and machine learning. Go to the interdisciplinary conferences and workshops that are deliberately meant to bring together scientists, legal scholars, philosophers, sociologists, and regulators. Hear their views on these problems, keep an ear out for whether they even think you're working on a problem that's relevant or even has a solution.

That's the way I have approached my career: focus on what I'm good at and what I think is interesting from a scientific standpoint, but not in a scientific vacuum. I deliberately expose myself whenever possible to what people from a completely different perspective are thinking about the same set of topics. The good news is that there's a lot of opportunity for that right now. If you work in some branch of material science, it may not be possible to wander out in the world and get diverse perspectives, but everybody has an opinion on AI and machine learning ethics these days, so there is no shortage of sources from which this hypothetical student could go out and find their own technical views challenged or broadened.

Roth: One trap that is very easy for a new PhD student, or even an established researcher, to fall into is to write the introductions to your papers motivated by some kind of fairness problem, but then find yourself solving some narrow technical problem that ultimately has little connection to the world. I am sometimes guilty of this myself, but this is an area where there really are lots of important problems to solve. It's an area where theoretical approaches, if wielded correctly, can be extremely valuable. The thing that’s valuable is to be, sort of, multilingual. It can be difficult to talk to people from other fields because those fields have different vocabularies and a different world view. However, it's important to understand the perspective of these different communities. There are interdisciplinary groups looking at fairness, accountability, and transparency, which bring people together from all sorts of backgrounds to actively work on developing, at the very least, a shared vocabulary—and hopefully a shared world view.

Q. You've become Amazon Scholars fairly recently. What inspired you to take on this role?

Roth: I've spent most of my career as a theorist, so the ways I've been primarily thinking about privacy and fairness are in the abstract. I've had fun thinking about questions like: What kinds of things are, and are not, possible in principle with differential privacy? Or what kinds of semantic fairness promises can you make to people in a way that is still consistent with trying to learn something from the data? The attraction of Amazon and AWS is that it's where the rubber meets the road. Here we are deploying real machine learning products, and the privacy and the fairness concerns are real and pressing.

My hope is that by having a foot in the practice of these problems, not just their theory, not only will I have some effect on how consequential products actually work, but I’ll learn things that will be helpful in developing new theory that is grounded in the real world.

Kearns: I've had a kind of second life in the quantitative finance industry up until I joined Amazon. While I spent time doing practical things in the world of finance, it was more just using my general knowledge in machine learning. The opportunity to come to Amazon and really think about the topics we've been discussing in a practical technological setting seemed like a great opportunity. I'm also a long-term fan and observer of the company. I’ve known people here for many years, and have had great conversations with them. So I’ve watched with great interest over the last decade plus as Amazon grew its machine learning effort from scratch and gradually grew it to have wider and wider applications. It’s now at a point where not only is machine learning used widely within the company to optimize all kinds of processes and recommendations and the like, but it’s also used by customers worldwide in the form of services like Amazon SageMaker.

I have watched this with great interest because when I was studying machine learning in graduate school back in the late 80s, trust me, it was an obscure corner of AI that people kind of raised their eyebrows at. I never would have thought we would reach the point where not only does The Wall Street Journal expect everyone to know what they mean when they write about machine learning, but that it would actually be a product sold at scale.

I've watched these developments from academia and from the world of finance.  It seemed like a great opportunity to combine my very specific current research and other interests with an inside look at one of the great technology companies. Like Aaron, my expectations, which were high, have only been exceeded in the time I've spent here.

Research areas

Related content

US, CA, San Francisco
We are seeking a highly motivated PhD Research Scientist Intern to join our robotics teams at Amazon. This internship offers a unique opportunity to work on cutting-edge robotics projects that directly impact millions of customers worldwide. You will collaborate with world-class experts, tackle groundbreaking research problems, and contribute to the development of innovative solutions that shape the future of robotics and artificial intelligence. As a Research Scientist intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes, and work with massive datasets. You'll find yourself at the forefront of innovation, working with large language models, multi-modal models, and modern reinforcement learning techniques, especially as applied to real-world robots. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions in robotics and AI. You'll then immerse yourself in a world of data and algorithms, leveraging your expertise in large language models and multi-modal systems to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Research Scientist Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA, and San Francisco, CA. We are particularly interested in candidates with expertise in: Robotics, Computer Vision, Artificial Intelligence, Causal Inference, Time Series, Large Language Models, Multi-Modal Models, and Reinforcement Learning. In this role, you gain hands-on experience in applying cutting-edge analytical and AI techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights and advanced AI models to drive operational excellence in robotics, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail, and have the ability to thrive in a fast-paced, ever-changing environment. A day in the life Work alongside global experts to develop and implement novel scalable algorithms in robotics, incorporating large language models and multi-modal systems. Develop modeling techniques that advance the state-of-the-art in areas of robotics, particularly focusing on modern reinforcement learning for real-world robotic applications. Anticipate technological advances and work with leading-edge technology in AI and robotics. Collaborate with Amazon scientists and cross-functional teams to develop and deploy cutting-edge robotics solutions into production, leveraging the latest in language models and multi-modal AI. Contribute to technical white papers, create technical roadmaps, and drive production-level projects that support Amazon Science in the intersection of robotics and advanced AI. Embrace ambiguity, maintain strong attention to detail, and thrive in a fast-paced, ever-changing environment at the forefront of AI and robotics research.
US, MA, Westborough
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Research Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Research Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Research Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics
US, NY, New York
Amazon is looking for an Applied Scientist to help build the next generation of sourcing and vendor experience systems. The Optimal Sourcing Systems (OSS) owns the optimization of inventory sourcing and the orchestration of inbound flows from vendors worldwide. We source inventory from thousands of vendors for millions of products globally while orchestrating the inbound flow for billions of units. Our goals are to increase reliable access to supply, improve supply chain-driven vendor experience, and reduce end-to-end supply chain costs, all in service of maximizing Long-Term Free Cash Flow (LTFCF) for Amazon. As an Applied Scientist, you will work with software engineers, product managers, and business teams to understand the business problems and requirements, distill that understanding to crisply define the problem, and design and develop innovative solutions to address them. Our team is highly cross-functional and employs a wide array of scientific tools and techniques to solve key challenges, including optimization, causal inference, and machine learning/deep learning. Some critical research areas in our space include modeling buying decisions under high uncertainty, vendors' behavior and incentives, supply risk and enhancing visibility and reliability of inbound signals. Key job responsibilities You will be a science tech leader for the team. As a Applied Scientist you will: - Set the scientific strategic vision for the team. You - - lead the decomposition of problems and development of roadmaps to execute on it. - Set an example for other scientists with exemplary scientific analyses; maintainable, extensible, and well-tested code; and simple, intuitive, and effective solutions. - Influence team business and engineering strategies. - Exercise sound judgment to prioritize between short-term vs. long-term and business vs. technology needs. - Communicate clearly and effectively with stakeholders to drive alignment and build consensus on key initiatives. - Foster collaborations between scientists across Amazon researching similar or related problems. - Actively engage in the development of others, both within and outside the team. - Engage with the broader scientific community through presentations, publications, and patents.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role Data is central to Twitch's decision-making process, and data scientists are a critical component to evangelize data-driven decision making in all of our operations. As a data scientist at Twitch, you will be on the ground floor with your team, shaping the way product performance is measured, defining what questions should be asked, and scaling analytics methods and tools to support our growing business, leading the way for high quality, high velocity decisions for your team. For this role, we're looking for an experienced product data scientist who will help develop the strategy and evaluate/improve product initiatives within our Creator product team. You will be responsible to define and track KPIs, design experiments, evaluate A/B tests, implement data instrumentation, and inform on investment. Our ideal candidate is a "full-stack" data powerhouse who uses data to drive decision making to make the best products for our creators and their communities. Your input will be core to decision making across all major product strategies and initiatives that our team builds. You will work closely with product managers, technical program managers, engineering, data scientists, and organization leadership within and outside of the Creator organization. You Will - Inform product strategies by defining and updating core metrics for each initiative - Establish analytical framework for your team: ad-hoc analysis, automated dashboards, and self-service reporting tools to surface key data to stakeholders - Evaluate and forecast impact of product features on creators, viewers, and the entire Twitch ecosystem - Design A/B experiments to drive product direction with iterative innovation and measurement - Drive the team's analysis roadmap and prioritize the most valuable projects - Tackle complex and ambiguous analytic projects, resolve ambiguity and accurately identify the trade-offs between speed and quality and apply or route work as necessary - Dive deep into the data to understand how creator and viewer behaviors change with the evolution of our product - Act as our team's thought leader on best practices and move towards long-term vision of sustainable and thriving data processes - Own data collection and product instrumentation implementation and quality assurance - Work hand-in-hand with business, product, engineering, and design to proactively influence and inform teammates' decisions throughout the product life cycle - Distill ambiguous product or business questions, find clever ways to answer them, and to quantify the uncertainty Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount About the team Twitch is all about community, and our Community Team is a core pillar of what makes Twitch, Twitch. Teams within Community are responsible for a myriad of product areas impacting the creator, viewer, and moderator journeys on our platform. As a member of our team, you'll build solutions that improve g the experience of millions of daily active users on our platform and create tools that keep both streamers and viewers engaged and connected on our platform.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, NY, New York
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of autonomous agents. Agents with full autonomy need to be trustworthy and verifiable. The team develops AI systems that exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. Such agents sense, plan, and act effectively in interactive and previously unseen environments. To accomplish this goal we are seeking scientists with expertise in large language models, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, CA, Santa Clara
The Think Forward Lab team at Deep Science for Systems & Services (DS3), AWS AI/ML is looking for world class scientists and engineers to join its group working on deployment of structure-aware next generation systems that can reason over heterogenous data assets and reduce hallucination making AI systems reliable. The team develops AI systems that utilize structure exhibit autonomous proficiency across a wide range of domains, demonstrating competency in many (complex) tasks previously performed by human knowledge workers. To accomplish this goal we are seeking scientists with expertise in large language models, graph machine learning, user alignment, neuro-symbolic AI, synthetic data generation and agentic environments. This is a role that combines science knowledge, technical strength, and product focus. It will be your job to develop novel generative AI-based agentic systems and algorithms while working with the engineering team to integrate them into different projects in the AWS AI portfolio of services. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Key job responsibilities You will be a hands on contributor to science at Amazon. You will help raise the scientific bar by mentoring, educating, and publishing in your field. You will help build the scientific roadmap for graph retrieval augmented generation, agents, neuro-symbolic AI and LLMs. You will be a technical leader in your domain. You will be a strong mentor and lead for your team. A day in the life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. About the team The DS3 org encompasses scientists who work closely with different AWS AI/ML product services, innovating on the behalf of our customers customers. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying.
US, WA, Seattle
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. In 2019, Amazon co-founded The Climate Pledge and made a commitment to achieve net-zero carbon by 2040 —10 years ahead of the Paris Agreement. We invited others to join us and there are now more than 300 businesses and organizations across 51 industries and 29 countries that have signed the Pledge, which means we are collectively coming at the climate crisis from nearly every sector and nearly every angle. As part of our efforts to decarbonize our business, we became the world’s largest corporate purchaser of renewable energy in 2020, and last year, we reached 85% renewable energy across our business, and are on a path to power our operations with 100% renewable energy by 2025. We recently announced that AWS will be water positive by 2030, returning more water to communities than it uses in its direct operations. The company also announced its 2021 global water use efficiency (WUE) metric of 0.25 liters of water per kilowatt-hour, demonstrating AWS’s leadership in water efficiency among cloud providers. To learn more about AWS’s water+ commitment visit: Water Stewardship. Come join the team that is building the tools and innovative technology to manage our growing portfolio of renewable energy investments, including solar, on-shore and off-shore wind farms. Key job responsibilities As an data scientist, you will employ machine learning and analytics to create scalable solutions for problems in sustainable energy space. You will dissect large historical business data sets to enhance and streamline essential processes. You will partner with data and software teams to create models for predictive insights and establish automated methods for large data analysis. A day in the life To learn more, you can visit: amazon sustainability in the cloud About the team Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, CA, Santa Clara
Are you passionate about applying automated reasoning and program analysis to real world problems? Do you want to create products that help customers? If so, then we have an exciting opportunity for you. We’re looking for an Applied Scientist to help strengthen our customers' security with automation for managed controls. AWS Identity provides the bedrock for secure and continuous access to all AWS services. By quickly connecting millions of users, across the world we empower organizations and enterprises to accelerate their cloud and digital transformation. In this role, you will interact with internal teams and external customers to understand their requirements. You will apply your knowledge to propose innovative solutions, create software prototypes, and productize prototypes into production systems using software development tools and methodologies. In addition, you will support and scale your solutions to meet the ever growing demand of customer use. Key job responsibilities * Interact with various teams to develop an understanding of their security and safety requirements. * Apply the acquired knowledge to build tools and algorithms, find problems, or show the absence of security/safety problems. * Implement these capabilities through the use of Automated Reasoning and various concepts from programming languages. * Perform analysis of the customer systems using tools developed in-house or externally provided * Create software prototypes to verify and validate the devised solutions methodologies; integrate the prototypes into production systems using standard software development tools and methodologies. About the team About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. This team is part of AWS Utility Computing: Utility Computing (UC) AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, time-series forecasting, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the cutting-edge of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, time-series, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep-training in one area of econometrics. For example, many applications on the team use structural econometrics, machine-learning, and time-series forecasting. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.