Michael Kearns and Aaron Roth seated at a table in front of a large chalk board.
Michael Kearns, left, and Aaron Roth, right, are the co-authors ofThe Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns and Roth are leading researchers in machine learning, University of Pennsylvania computer science professors, and Amazon Scholars.
University of Pennsylvania

Amazon Scholars Michael Kearns and Aaron Roth discuss the ethics of machine learning

Two of the world’s leading experts on algorithmic bias look back at the events of the past year and reflect on what we’ve learned, what we’re still grappling with, and how far we have to go.

In November of 2019, University of Pennsylvania computer science professors Michael Kearns and Aaron Roth released The Ethical Algorithm: The Science of Socially Aware Algorithm Design. Kearns is the founding director of the Warren Center for Network and Data Sciences, and the faculty founder and former director of Penn Engineering’s Networked and Social Systems Engineering program. Roth is the co-director of Penn’s program in Networked and Social Systems Engineering and co-authored The Algorithmic Foundations of Differential Privacy with Cynthia Dwork. Kearns and Roth are leading researchers in machine learning, focusing on both the design and real-world application of algorithms.

Their book’s central thesis, which involves “the science of designing algorithms that embed social norms such as fairness and privacy into their code,” was already pertinent when the book was released. Fast forward one year, and the book’s themes have taken on even greater significance.

Amazon Science sat down with Kearns and Roth, both of whom recently became Amazon Scholars, to find out whether the events of the past year have influenced their outlook. We talked about what it means to define and pursue fairness, how differential privacy is being applied in the real world and what it can achieve, the challenges faced by regulators, what advice the two University of Pennsylvania professors would give to students studying artificial intelligence and machine learning, and much more.

Q. How has the narrative around designing socially aware algorithms evolved in the past year, and have the events of the past year altered your outlooks in any way?

Aaron Roth: The main thesis of our book, which is that in any particular problem you have to start by thinking carefully about what you want in terms of fairness or privacy or some other social desideratum, and then how you relatively value things like that compared to other things you might care about, such as accuracy—that fundamental thesis hasn't really changed.

Now with the coronavirus pandemic, what we have seen are application areas where how you want to manage the trade-off between accuracy and privacy, for example, is more extreme than we usually see. So, for example, in the midst of an outbreak, contact tracing might be really important, even though you can't really do contact tracing while protecting individual privacy. Because of the urgency of the situation, you might decide to trade off privacy for accuracy. But because the message of our book really is about thinking things through on a case-by-case basis, the thesis itself hasn't changed.

Michael Kearns: The events of the last year, in particular coronavirus, the resulting restrictions on society and the tensions around these restrictions, and all of the recent social upheaval in the United States, clearly has made the topics of our book much more relevant. The book has focused a lot of attention on the use of algorithms for both good and bad purposes, including things like contact tracing or releasing statistics about people's movements or health data, as well as the use of machine learning, AI, and algorithms more generally for applications like surveillance.

Since our book, at a high level, is about the tensions that arise when there's a battle between social norms like equality or privacy and the use of algorithms for optimizing things like performance or error, I don't think anything in the last year has changed our thinking about the technical aspects of these problems. It's clear that society has been forced to face these problems in a very direct way because of the events of the last year, in a way that we really haven't before. In that sense, our timing was very fortunate because the things we're talking about are more relevant now than ever.

Q. How does that affect your ability to define fairness? Is that something that can ever be a fixed definition, or does it need to be adjusted as events or specific use cases dictate?

Kearns: There's not one correct definition of fairness. In every application you have to think about who the parties are that you're trying to protect, and what the harms are that you're trying to protect them from. That changes both over time and in different scenarios.

Roth: Even before the events of the last year, fairness was always a very context- and beholder- dependent notion. One society might be primarily concerned about fairness by race, and another might be primarily concerned about fairness by gender, and a different community might have other norms. The events of the last year have highlighted cases in which not only will things vary over space or communities, but also over time.

People's attitudes about relatively invasive technologies like contact tracing might be quite different now than they were a year ago. If a year ago I told you, “Suppose there was some disease that some people were catching and the most effective way of tamping it down was to do contact tracing.” Many people might have said, “That sounds really invasive to me”, but now that we've all been through one of the alternatives—being on lock down for six months—people's minds might be changed. We’ve definitely seen norms around privacy for health-related data change.

Q. Standard setting bodies have a significant challenge when it comes to auditing algorithms. Given the scope of that challenge, what needs to happen to allow those groups to do that effectively?

Roth: Although it hasn't happened yet, regulatory agencies are thinking about this, and are reaching out to people like us to help them think about doing this in the right way. I don't know of any regulatory agency that is ready yet to audit algorithms at-scale in sensible ways of the technical sort we discuss in the book. But there are regulatory agencies that have gotten the idea that they should be gearing up to do this, and those agencies have started preliminary movements in that direction.

Kearns: Many of the conversations we've had with standard setting bodies make it clear they're realizing that, collectively, they've technologically fallen behind the industries that they regulate. They don't have the right resources or personnel to do some of the more technological types of auditing. But in these conversations, it's also become clear to us that, even if you could snap your fingers and get the right people and the right resources, it will only be part of a broader framework.

Other important pieces involve becoming more precise about best practices, and also thinking carefully about what those specifications should look like. Let me give a concrete example: One of the things that we argue in our book is that there are many laws and regulations in areas like consumer finance, for instance, that try to get at fairness by restricting what kinds of inputs an algorithm can use. These laws and regulations say, “In order to make sure that your model isn't racially discriminatory, you must not use race as a variable.” But, in fact, not using race as a variable is no guarantee that you won't build a model that's discriminatory by race. In fact, it can actually exacerbate that problem. What we advocate in the book is, rather than restricting the inputs, you should specify the behavior you want as outputs. So instead of saying, “Don't use race”, say instead, “The outputs of the models shouldn't be discriminatory by race.”

Q. Differential privacy has progressed from theoretical to applied science in significant ways in the past few years. How is differential privacy being utilized? How does that help balance the trade-off between privacy and accuracy?

Roth: In the last five years or so, differential privacy has gone from an academic topic to a real technology. For example, the 2020 US Decennial Census is going to release all of its statistical products for the first time, subject to the protections of differential privacy. This is because, by law, the Census is required to protect the privacy of the people it is surveying. The ad hoc techniques used in previous decades to protect the statistics have been shown not to work.

I think that what we will see is that the statistics that the Census releases this year will be more protective of the privacy of Americans. However, in the theme of trade off, using rigorous privacy protections is not without cost. Certain kinds of analyses, such as detailed demographic studies that rely on having highly granular Census data, might now be unavailable under differential privacy. We've seen this play out in the public sphere between downstream users of the data and folks at Census who actually have to hammer out the details.

We've seen other interesting uses of differential privacy during the pandemic too. Some tech companies have utilized differential privacy when releasing statistics about personal mobility data gathered during the pandemic. What differential privacy is best at is releasing those kinds of population level statistics: It's exactly designed to prevent you from learning too much about any particular individual. If you want to know how much less people are moving around different cities because of coronavirus restrictions, these data sets let you answer that question without giving up too much privacy for individuals whose mobile devices were providing the data at the most granular level.

Q. So how does differential privacy help protect individual information?

Roth: Oftentimes the things that you will most naturally want to know about a data set are not facts about particular people, but are population level aggregates like, how many people are crowded into my supermarket at 6 a.m. when it opens. If you tell me sufficiently many aggregate statistics, I can do some math and back out particular people's data from that. The fact that aggregate statistics can be disclosive about individual people's data is an unfortunate accident that actually doesn't have too much to do with what you really wanted to learn.

At its most basic level, differential privacy does things like add little bits of noise to the statistics that you're releasing so that what you're telling me is not the exact number of people who were in my local supermarket at 6 a.m., but roughly the number of people who were in the supermarket plus or minus some small number of people. The fortunate mathematical fact is that you can add amounts of noise that are relatively small that still allow you to get good estimates, but are sufficient to wash out the contributions of particular people, making it impossible to learn too much about any particular individual. It lets you get access to these population level questions that you were curious about without incidentally or accidentally learning about particular people, which is the dangerous side.

"We are bullish about algorithms"
Michael Kearns and Aaron Roth talked to Oxford Academic about the future of AI.

Kearns: To make this slightly more concrete, say what I want to do is each day tell everybody how many people were in the supermarket a couple blocks from me at 1 p.m. If you happened to be at that supermarket at one o’clock, then your GPS data is one of the data points that goes into the count. You may consider your presence at supermarket at 1 p.m. to be the kind of private information that you don't want the whole world to know. So then let's say that, on a typical day, there might be a couple hundred people at the supermarket, but that I add a number which is an order of magnitude, plus or minus 25. The addition of that random number mathematically and provably obscures any individual’s contributions to that count. I won't be able to look at that count and try to figure out any particular person who was present. If I add a number that's between minus 25 and 25, I can't affect the overall count by 100. I'll still have an accurate count up to some resolution, but I will have provided privacy to everybody who was present at the supermarket and, actually, all the people who weren't present as well.

Q. How are topics like fairness, accountability, transparency, interpretability, and privacy showing up in computer science curriculum at Penn and elsewhere within higher education?

Kearns: When Aaron and I first started working on the technical aspects of fairness in machine learning and related topics, it was pretty sparsely populated. This was maybe six or seven years ago, and there weren't many papers on the topics. There were some older ones, more from the statistics literature, but there wasn't really a community of any size within machine learning that thought about these problems. On the research side, the opposite is now true. All of the major machine learning conferences have significant numbers of papers and workshops on these topics; they have workshops devoted to these topics. There are now standalone conferences about fairness, accountability, and explainability in machine learning that are growing every year. It's a very vibrant, active research community now. Additionally, even though it's still early, it's an important enough topic that there are now starting to be efforts to teach this even at the undergraduate level.

The last two years at Penn, for example, I have piloted a course called The Science of Data Ethics. It’s deliberately called that and not The Ethics of Data Science. What that represents is that it’s about the science of making algorithms that are more ethical by different norms, like fairness and privacy. It's not your typical engineering ethics course, which at some level is meant to teach you to be a good, responsible person in that you look at case studies where things went wrong and you talk about what you would do differently. This class is a science class. It says: Here are the standard principles of machine learning, here's how those standard principles can lead to discriminatory behavior in my predictive models, and here are alternate principles, or modifications of those principles and the algorithms that implement them, that avoid or mitigate that behavior.

Q. Is there a more multidisciplinary approach to this set of challenges?

Roth: It's definitely a multidisciplinary area. At Penn, we've been actively collaborating with interested folks in the law school and the criminology department. So far, we don't really have interdisciplinary undergraduate courses on these topics. Those courses would be good in the long run, but at the research and graduate level we've been having interdisciplinary conversations for a number of years.

In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline.
Michael Kearns

Kearns: Not just at the teaching level, but even in the research community, there's a real melting pot of viewpoints on these topics. Even though our book is focused on the scientific aspects of these issues, we do spend some time mentioning the fact that the science will only take us so far. In particular, one critique that we try to anticipate in the book, and that we’re very aware of, is that technical work on making algorithms more ethical is only one piece of a much larger sociological, or what some people would call socio-technical, pipeline. Machine learning begins with data and ends with a model. But upstream from the data is the entire manner in which the data was collected and the conditions under which it was collected.

One of the things that's very interesting, exciting, and necessary about the dialogue around these kinds of issues is that, even when there's quite a bit to say on them scientifically, you don't want to just put your head down and look at the science. You want to talk to people who are upstream and downstream from the machine learning part of this pipeline because they bring very different perspectives, and can often point out perspectives which can help you change the way you look at things scientifically in a positive way.

Q. If I were a student exploring AI or ML and I wanted to influence this particular conversation, beyond technical skills, what kind of skills should I be developing?

Kearns: What I would very strongly advocate is: think widely, think broadly, think big. Yes, you're going to be doing technical work in particular models and frameworks, and you know you want to get results in those frameworks. But also read what people who are from very, very different fields think about these problems. Go to their conferences, don't just go to the machine learning conferences and to the sub-track on fairness and machine learning. Go to the interdisciplinary conferences and workshops that are deliberately meant to bring together scientists, legal scholars, philosophers, sociologists, and regulators. Hear their views on these problems, keep an ear out for whether they even think you're working on a problem that's relevant or even has a solution.

That's the way I have approached my career: focus on what I'm good at and what I think is interesting from a scientific standpoint, but not in a scientific vacuum. I deliberately expose myself whenever possible to what people from a completely different perspective are thinking about the same set of topics. The good news is that there's a lot of opportunity for that right now. If you work in some branch of material science, it may not be possible to wander out in the world and get diverse perspectives, but everybody has an opinion on AI and machine learning ethics these days, so there is no shortage of sources from which this hypothetical student could go out and find their own technical views challenged or broadened.

Roth: One trap that is very easy for a new PhD student, or even an established researcher, to fall into is to write the introductions to your papers motivated by some kind of fairness problem, but then find yourself solving some narrow technical problem that ultimately has little connection to the world. I am sometimes guilty of this myself, but this is an area where there really are lots of important problems to solve. It's an area where theoretical approaches, if wielded correctly, can be extremely valuable. The thing that’s valuable is to be, sort of, multilingual. It can be difficult to talk to people from other fields because those fields have different vocabularies and a different world view. However, it's important to understand the perspective of these different communities. There are interdisciplinary groups looking at fairness, accountability, and transparency, which bring people together from all sorts of backgrounds to actively work on developing, at the very least, a shared vocabulary—and hopefully a shared world view.

Q. You've become Amazon Scholars fairly recently. What inspired you to take on this role?

Roth: I've spent most of my career as a theorist, so the ways I've been primarily thinking about privacy and fairness are in the abstract. I've had fun thinking about questions like: What kinds of things are, and are not, possible in principle with differential privacy? Or what kinds of semantic fairness promises can you make to people in a way that is still consistent with trying to learn something from the data? The attraction of Amazon and AWS is that it's where the rubber meets the road. Here we are deploying real machine learning products, and the privacy and the fairness concerns are real and pressing.

My hope is that by having a foot in the practice of these problems, not just their theory, not only will I have some effect on how consequential products actually work, but I’ll learn things that will be helpful in developing new theory that is grounded in the real world.

Kearns: I've had a kind of second life in the quantitative finance industry up until I joined Amazon. While I spent time doing practical things in the world of finance, it was more just using my general knowledge in machine learning. The opportunity to come to Amazon and really think about the topics we've been discussing in a practical technological setting seemed like a great opportunity. I'm also a long-term fan and observer of the company. I’ve known people here for many years, and have had great conversations with them. So I’ve watched with great interest over the last decade plus as Amazon grew its machine learning effort from scratch and gradually grew it to have wider and wider applications. It’s now at a point where not only is machine learning used widely within the company to optimize all kinds of processes and recommendations and the like, but it’s also used by customers worldwide in the form of services like Amazon SageMaker.

I have watched this with great interest because when I was studying machine learning in graduate school back in the late 80s, trust me, it was an obscure corner of AI that people kind of raised their eyebrows at. I never would have thought we would reach the point where not only does The Wall Street Journal expect everyone to know what they mean when they write about machine learning, but that it would actually be a product sold at scale.

I've watched these developments from academia and from the world of finance.  It seemed like a great opportunity to combine my very specific current research and other interests with an inside look at one of the great technology companies. Like Aaron, my expectations, which were high, have only been exceeded in the time I've spent here.

Research areas

Related content

US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Sr. Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, CA, Sunnyvale
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. We leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. As an Applied Scientist, you will develop and improve machine learning systems that help robots perceive, reason, and act in real-world environments. You will leverage state-of-the-art models (open source and internal research), evaluate them on representative tasks, and adapt/optimize them to meet robustness, safety, and performance needs. You will invent new algorithms where gaps exist. You’ll collaborate closely with research, controls, hardware, and product-facing teams, and your outputs will be used by downstream teams to further customize and deploy on specific robot embodiments. Key job responsibilities - Leverage state-of-the-art models for targeted tasks, environments, and robot embodiments through fine-tuning and optimization. - Execute rapid, rigorous experimentation with reproducible results and solid engineering practices, closing the gap between sim and real environments. - Build and run capability evaluations/benchmarks to clearly profile performance, generalization, and failure modes. - Contribute to the data and training workflow: collection/curation, dataset quality/provenance, and repeatable training recipes. - Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
US, NY, New York
Advertising at Amazon is growing incredibly fast and we are responsible for defining and delivering a collection of advertising products that drive discovery and sales. Amazon Business Ads is equally growing fast ($XXXMs to $XBs) and owns engineering and science for the AB WW ad experience. We build business-to-business (“B2B”) specific ad solutions distributed across retail and ad systems for shopper and advertiser experiences. Some include new ad placements or widgets, creatives, sourcing techniques, ad campaign management capabilities and much more! We consider unique AB qualities which are differentiated from the consumer experience such as varying shopper role types, purchasing complexities based on business size and industry (eg education vs healthcare), AB specific features (eg business discounts, buying policies to restrict and prefer products), and AB buyer behaviors (eg buying in bulk). We are seeking a scientific leader who can drive innovation in complex problem areas and new business initiatives. The ideal candidate will: Technical & Research Requirements: * Demonstrate fluency in Python, R, Matlab or other statistical languages and familiarity with deep learning frameworks like PyTorch, TensorFlow * Lead end-to-end solution development from research to prototyping and experimentation * Write and deploy significant parts of scientifically novel software solutions into production Leadership & Influence: * Drive team's scientific agenda by proposing new initiatives and securing management buy-in including PM, SDM * Mentor colleagues and contribute to their professional development * Build consensus on large projects and influence decisions across different teams in Ads Key Leadership Principles: * Dive Deep: Uncover non-obvious insights in data * Deliver Results: Create solutions aligned with customer and product needs * Learn and Be Curious: Demonstrate self-driven desire to explore new research areas * Earn Trust: Build relationships with stakeholders through understanding business needs
JP, 13, Tokyo
Are you a Graduate Student interested in machine learning, natural language processing, computer vision, automated reasoning, robotics? We are looking for skilled scientists capable of putting theory into practice through experimentation and invention, leveraging science techniques and implementing systems to work on massive datasets in an effort to tackle never-before-solved problems. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. Key job responsibilities Amazon Science gives insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Amazon Scientist use our working backwards method to enrich the way we live and work. A day in the life Come teach us a few things, and we’ll teach you a few things as we navigate the most customer-centric company on Earth.
US, NY, New York
At Amazon Selection and Catalog Systems (ASCS), our mission is to power the online buying experience for customers worldwide so they can find, discover, and buy any product they want. We innovate on behalf of our customers to ensure uniqueness and consistency of product identity and to infer relationships between products in Amazon Catalog to drive the selection gateway for the search and browse experiences on the website. We're solving a fundamental AI challenge: establishing product identity and relationships at unprecedented scale. Using Generative AI, Visual Language Models (VLMs), and multimodal reasoning, we determine what makes each product unique and how products relate to one another across Amazon's catalog. The scale is staggering: billions of products, petabytes of multimodal data, millions of sellers, dozens of languages, and infinite product diversity—from electronics to groceries to digital content. The research challenges are immense. GenAI and VLMs hold transformative promise for catalog understanding, but we operate where traditional methods fail: ambiguous problem spaces, incomplete and noisy data, inherent uncertainty, reasoning across both images and textual data, and explaining decisions at scale. Establishing product identities and groupings requires sophisticated models that reason across text, images, and structured data—while maintaining accuracy and trust for high-stakes business decisions affecting millions of customers daily. Amazon's Item and Relationship Platform group is looking for an innovative and customer-focused applied scientist to help us make the world's best product catalog even better. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will pioneer advanced GenAI solutions that power next-generation agentic shopping experiences, working in a collaborative environment where you can experiment with massive data from the world's largest product catalog, tackle problems at the frontier of AI research, rapidly implement and deploy your algorithmic ideas at scale, across millions of customers. Key job responsibilities * Formulate novel research problems at the intersection of GenAI, multimodal learning, and large-scale information retrieval—translating ambiguous business challenges into tractable scientific frameworks * Design and implement leading models leveraging VLMs, foundation models, and agentic architectures to solve product identity, relationship inference, and catalog understanding at billion-product scale * Pioneer explainable AI methodologies that balance model performance with scalability requirements for production systems impacting millions of daily customer decisions * Own end-to-end ML pipelines from research ideation to production deployment—processing petabytes of multimodal data with rigorous evaluation frameworks * Define research roadmaps aligned with business priorities, balancing foundational research with incremental product improvements * Mentor peer scientists and engineers on advanced ML techniques, experimental design, and scientific rigor—building organizational capability in GenAI and multimodal AI * Represent the team in the broader science community—publishing findings, delivering tech talks, and staying at the forefront of GenAI, VLM, and agentic system research
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. As an Applied Scientist in Sensing, you will develop innovative and complex sensing systems for our emerging robotic solutions and improve existing on-robot sensing to optimize performance and enhance customer experience. The ideal candidate has demonstrated experience designing and troubleshooting custom sensor systems from the ground up. They enjoy analytical problem solving and possess practical knowledge of robotic design, fabrication, assembly, and rapid prototyping. They thrive in an interdisciplinary environment and have led the development of complex sensing systems. Key job responsibilities - Design and adapt holistic on-robot sensing solutions for ambiguous problems with fluid requirements - Mentor and develop junior scientists and engineers - Work with an interdisciplinary team to execute product designs from concept to production including specification, design, prototyping, validation and testing - Have responsibility for the designs and performance of a sensing system design - Work with the Operations, Manufacturing, Supply Chain and Quality organizations as well as vendors to ensure a fast development and delivery of the sensing concepts to the team - Develop overall safety concept of the sensing platform - Exhibit role model behaviors of applied science best practices, thorough and predictive analysis and cradle to grave ownership
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will be responsible for maintaining our task management system which supports many internal and external stakeholders and ensures we are able to continue adding orders of magnitude more data and reliability.
US, WA, Bellevue
The Amazon Fulfillment Technology (AFT) Science team is seeking an exceptional Applied Scientist with strong operations research and optimization expertise to develop production solutions for one of the most complex systems in the world: Amazon's Fulfillment Network. At AFT Science, we design, build, and deploy optimization, statistics, machine learning, and GenAI/LLM solutions that power production systems running across Amazon Fulfillment Centers worldwide. We solve a wide range of challenges encountered throughout the network, including labor planning and staffing, pick scheduling, stow guidance, and capacity risk management. We are tasked with developing innovative, scalable, and reliable science-driven production solutions that exceed the published state of the art, enabling systems to run frequently (ranging from every few minutes to every few hours per use case) and continuously across our large-scale network. Key job responsibilities As an Applied Scientist, you will collaborate with other scientists, software engineers, product managers, and operations leaders to develop optimization-driven solutions using a variety of tools and observe direct impact on process efficiency and associate experience in the fulfillment network. Key responsibilities include: - Develop understanding and domain knowledge of operational processes, system architecture and functions, and business requirements - Deep dive into data and code to identify opportunities for continuous improvement and/or disruptive new approaches - Develop scalable mathematical models for production systems to derive optimal or near-optimal solutions for existing and new challenges - Create prototypes and simulations for agile experimentation of devised solutions - Advocate for technical solutions with business stakeholders, engineering teams, and senior leadership - Partner with engineers to integrate prototypes into production systems - Design experiments to test new or incremental solutions launched in production and build metrics to track performance A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team Amazon Fulfillment Technology (AFT) designs, develops, and operates end-to-end fulfillment technology solutions for all Amazon Fulfillment Centers (FCs). We harmonize the physical and virtual worlds so Amazon customers can get what they want, when they want it. The AFT Science team has expertise in operations research, optimization, statistics, machine learning, and GenAI/LLM. We also possess deep domain expertise in operational processes within FCs and their challenges. We prioritize advancements that support AFT tech teams and focus areas rather than specific fields of research or individual business partners. We influence each stage of innovation from inception to deployment, which includes both developing novel solutions and improving existing approaches. Resulting production systems rely on a diverse set of technologies; our teams therefore invest in multiple specialties as the needs of each focus area evolve.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
US, WA, Seattle
Employer: Amazon.com Services LLC Position: Economist III (multiple positions available) Location: Seattle, Washington Multiple Positions Available: 1. Partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond; 2. Build econometric models using our world class data systems and apply approaches from a variety of skillsets - applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon; 3. Work in a fast moving environment to solve business problems as a member of either a crossfunctional team embedded within a business unit or a central science and economics organization; 4. Develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company; and 5. Utilize deep knowledge in time series econometrics, asset pricing, empirical macroeconomics, or the use of micro and panel data to improve and validate traditional aggregative models. (40 hours / week, 8:00am-5:00pm, Salary Range $159,200.00/year to $215,300.00/year) Amazon.com is an Equal Opportunity – Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation