Howard University's Founders Library is seen in the distance.
Howard University's Founders Library is seen in the distance. Howard is hosting AEASP “in support of increasing the pipeline of underrepresented minority economists.”
Oscar Merrida IV

Amazon to sponsor Howard University summer program aimed at increasing pipeline of minority economists

Howard University is the first Black college to host the American Economic Association Summer Training and Scholarship Program.

Howard University recently announced that it will host the American Economic Association Summer Training and Scholarship Program (AEASP) “in support of increasing the pipeline of underrepresented minority economists.” The program will be hosted at Howard for the next five years, and Amazon is sponsoring next summer’s program. Amazon first began discussions with Howard University about sponsoring AEASP about two years ago. The program, which aims to prepare “talented undergraduates for doctoral programs in economics and related disciplines,” will celebrate its 50th anniversary in 2024 at Howard.

"The lack of diversity in economics becomes self-reinforcing"

Four economists from diverse backgrounds shared how economics can address its diversity problem and talked about how their lives have shaped their work as economists.

That Howard, an historically Black college and university (HBCU) which produces more Black economics undergrads than any other institution, is hosting AEASP for the first time serves as a reminder of the progress the economics profession still must make.

The Caucus of Black Economists (later called the National Economics Association) first began exploring the issues of underrepresentation of minorities within the economics field in 1969. More than 50 years later, the economics profession is still grappling with structural issues. In fact, last January’s AEA conference in San Diego featured a panel titled, “How Can Economics Solve Its Race Problem.”

Rhonda Vonshay Sharpe and Omari H. Swinton standing in front of Howard University.
Rhonda Vonshay Sharpe, left, and Omari H. Swinton, right, are seen posing on the campus of Howard University. They discussed why economics still struggles with diversity.
Oscar Merrida IV

Omari H. Swinton, the chair of Howard University’s Department of Economics, who is both an alumni and the current director of the AEA summer program, as well as the past president of the National Economics Association, has observed that, “The vast majority of institutions in the US have never had a Black economist on staff, and the vast majority of schools have never graduated a Black PhD economist.”

Rhonda Vonshay Sharpe, the founder and president of the Women's Institute for Science, Equity, and Race (WISER), which is also a partner in next summer’s AEASP program, authored a research paper in 2019 that found that from 1966 to 2015, “the number of undergraduate economics degrees conferred to Black women was stagnant, and there was a decrease in the number of doctorates conferred to Black men.”

So why does the economics field still have such a massive disparity in minority representation? What needs to happen for systemic progress to be made? Amazon Science sat down with Sharpe and Swinton to ask those questions, as well as why Howard hosting the summer program is so significant, and what advice they would give to students considering economics as a major or profession. We also talked with Amazon chief economist Pat Bajari to find out why Amazon is sponsoring next summer’s AEASP program, and why he thinks diversity within the economics profession is essential.

A Howard University sign on the Howard campus
The AEASP will celebrate its 50th anniversary in 2024 at Howard University.
Oscar Merrida IV

Why does economics still have such a significant diversity problem?

Omari H. Swinton: I don't know that economics, as a profession, has really agreed that there's a problem. I think that's one of the big issues—we’ll say there's a problem, but nothing ever changes. You oftentimes hear people say things like, ‘We want to increase diversity’ but don't actually make any changes. They just say that that's something that they want to do.

It’s not as if these things haven't been out there. There are people out there who have dedicated their lives to bringing these types of issues to the forefront. I go back to Sandy Darity as an example. If you read from his earlier work, he's talking about these issues. Gregory Price has chronicled which institutions have Black economists in them. Rhonda has been looking at these issues for years.

Whether the economics profession is really ready to change is the issue. There have been a lot of people who have been talking about these issues for years. Others have come out and mentioned these problems more recently, but they ignore the fact that people have been talking about issues of underrepresentation for years.

Rhonda Vonshay Sharpe on the campus of Howard University
Rhonda Vonshay Sharpe says economics needs to define what diversity means. "If you don't define it, you can't measure it, or hold folks accountable."
Oscar Merrida IV

Rhonda Vonshay Sharpe: I narrow the problem down to be three things: 1) Economics has never defined what diversity means, and if you don't define it, you can't measure it, or hold folks accountable; 2) We don't have accurate data to track progress. We need to collect data that can be disaggregated by characteristics that have been used to limit participation in the profession. For example, when you talk about women, that usually means white women, and when we talk in terms of race, then you're really talking about men, and both of those descriptors are biased; and 3) As Omari said, there's enormous erasure happening. People have been doing this a long time, yet newcomers who have recently gotten tenure suddenly feel bad. They are handed a mic as if they are now the authorities. They don’t bother to understand whose shoulders they're standing on.

What needs to happen to address this problem? What role can academic institutions and companies like Amazon play?

Sharpe: I don't think the answer is to hire more Black economists. I really don't. And here is why: Because I think that when people say, ‘hire more Black economists’, people do just that, they hire Black economists. They do not think about whether or not those Black economists are bringing lived experiences that are going to help you craft policies to better interact with your customers.

One of the things I've been saying to folks recently is we need to talk more about structural classism and the ways in which we treat folks who are poor. So, it's not just about hiring Black economists, it's not about hiring Hispanic economists. It's about hiring folks who have lived experience in the US that will get at the inequality and related issues. That's not going to be solved just by hiring an economist because they are non-white.

Omari H. Swinton, the chair of Howard University's Department of Economics, on Howard's campus.
Omari H. Swinton says the AEASP program coming to Howard "is important because this is what our program is designed to do: increase minority participation in the economics profession."
Oscar Merrida IV

Swinton: If you say you want to diversify the profession, then stop looking at things that are not really problems. For example, there's not really a pipeline problem. You can ask almost any economics professor who teaches Principles of Economics, and most will tell you that is probably one of the worst classes to use if you want somebody to be interested in economics as a profession. But it really hasn't changed in years.

One change that we're making in the summer program is the experiential internship, or experiential learning. We’re going to place students with think tanks and corporations to actually see what an economist outside of the academy does. Everybody that gets a PhD in economics isn't going to be able to get a job as a professor. What does it look like to be an economist at Amazon? What does it look like to be an economist at the Census Bureau or at Brookings? Those are entirely different experiences. We’re trying to partner with as many different organizations as possible.

Hopefully we'll see change at those institutions, because students will come to the summer program, have that experience, and want to go back to those institutions. Rather than wanting to be a professor, they will, for example, say, ‘I want to be an economist at the Census Bureau, because I believe this research is important.’ It’s important for organizations, public and private, to be available to students, so they can see the type of experiences they can have if they work for you.

Pat Bajari
Pat Bajari, Amazon vice president and chief economist
Carl Clark, Amazon Imaging Studio

Pat Bajari: As an economist, I have always thought of this is in terms of diminishing returns. If you always have the same type of viewpoint, and keep hiring replicas of that viewpoint, the returns you get from that eventually decrease. Having different viewpoints allows you to do better work. And because we serve a large and diverse base of customers, we have a large and diverse base of problems. We want to take a leading role in supporting a new generation of economists from underrepresented minorities—it is not only the right thing to do, but it will also help bring strong and diverse voices that will create an even more inclusive customer experience.

When individuals come from different backgrounds, they bring different perspectives to the table. You do better work when you have different perspectives.
Pat Bajari

Swinton: One thing organizations can do is find programs that are actually successful at achieving the types of goals they’re pursuing. For example, some of the research done by Becker et al. shows that about 20 percent of Blacks that have PhDs in economics have attended the AEASP program. By helping support Howard in hosting AEASP in this first year, Amazon is doing that. Without Amazon’s support, Howard wouldn't be able to host the AEA summer program at all. We certainly hope others will follow Amazon’s lead.

What is the significance of the summer program coming to Howard?

Swinton: The summer program is extremely important in my path as an economist. My first cohort of economists were the people that I met through the summer program. Howard is the number one producer as an undergraduate feeder of Blacks who go on to get PhDs in economics. This is our mission and one of our goals as an institution and as a department, and I think the AEA summer program coming to Howard is important because this is what our program is designed to do: increase minority participation in the economics profession.

The National Economics Association summer program came out of Marcus Alexis’ mind as a program to help get minorities interested in economics. For the AEASP program to come to Howard at this point in time is a great honor. It’s an honor to be the first HBCU to host the summer program.

Sharpe: I'm excited to see a program that's going to be led by Blacks, which I think is incredibly important, as the program will celebrate 50 years while it's at Howard in 2024. It just feels full circle in terms of thinking about Marcus Alexis, who was a Black economist, and then having the program 50 years later be at an institution that is the number one producer of Black economists. That's incredibly exciting.

Finally, what advice would you give to someone considering whether to pursue a degree in economics? Why is economics such an important field?

Bajari: A lot of economics is understanding people's material wellbeing. Who has low wages? Who has high wages? If you take a given policy, whether that's central bank policy or interventions into labor markets, etcetera, these things deeply, deeply, deeply affect people's lives, people's material outcomes. What they can purchase and where they can live and where they can send their kids to school and so forth. It's an important set of questions, and they range from micro things about what happens to the individual, to macro things, such as how the whole world is evolving and changing in response to things like COVID-19.

Howard University's Founders Library
Howard University's Founders Library is seen here. Howard is the first Black college to host AEASP.
Oscar Merrida IV

If we change policy or somebody goes to college versus doesn't go to college, what are the implications of those economic variables? I know this is what attracted me to economics. As a young person, growing up pretty poor in rural Minnesota, I was interested in the world and how it worked. And I liked economics because it brought math and data and scientific formalism to those questions. That's not the only way you can look at those questions, or the only way you should look at them, but it’s one way that's highly useful.

Sharpe: For students pursuing a PhD in economics, my main advice is to pick a PhD program that's a good fit for you. Many students think that if you don't go to a top program, you can't have a successful career. That’s not true. I went to Claremont Graduate University, not highly ranked, but I had an amazing time as a graduate student. I loved it. My mentee when I was in graduate school was Olugbenga Ajilore who’s at CAP (Center for American Progress) now, who is a rock star right now in terms of being in the news and asking people to think about rural communities. He and I didn't go to top economics departments, but we went to places that were good fits for us, and that's incredibly important.

Bajari: “Technology economics” is a booming field. The largest conference held by the National Association of Business Economists is now the tech economics conference. It’s larger than their annual conference now, because it's been an explosive area of job growth for young people. We are one of the larger private sector employers of economists. When you're in that role, you have an obligation to demonstrate leadership. We saw sponsorship of AEASP as an opportunity to expose young PhDs to this emerging field. I thought Howard was very thoughtful about their proposal, and I'm hoping AEASP can help us establish a pipeline of highly qualified candidates.

Swinton: I talk to students about this all the time. You want to make a change, and you want to be a policy maker? Be an economist. You want to go into business and work on Wall Street, make a lot of money? Be an economist. Economics is one of the most useful majors because it allows you the opportunity you to go out and do a wide variety of things based on the basic training you obtain.

Applications for the summer program are open and the deadline to apply is January 31, 2021. To apply, visit economics.howard.edu/aeasp. The program will be held May 27 to July 25, 2021, and be offered in Washington, D.C., contingent upon COVID-19 restrictions.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Research Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Analyze complex healthcare data to identify patterns, trends, and insights • Develop and validate statistical methodologies • Collaborate with Applied Scientists to support model development efforts • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for data analysis, data curation, and model evaluation • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in statistics, knowledge of the complications of longitudinal healthcare data, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You'll work with large-scale healthcare datasets, conducting sophisticated statistical analyses to generate actionable insights. You'll collaborate with Applied Scientists to prepare data, build ML models, validate model predictions and ensure statistical rigor in our approach. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, NJ, Newark
At Audible, we believe stories have the power to transform lives. It’s why we work with some of the world’s leading creators to produce and share audio storytelling with our millions of global listeners. We are dreamers and inventors who come from a wide range of backgrounds and experiences to empower and inspire each other. Imagine your future with us. ABOUT THIS ROLE As an Applied Scientist, you will solve large complex real-world problems at scale, draw inspiration from the latest science and technology to empower undefined/untapped business use cases, delve into customer requirements, collaborate with tech and product teams on design, and create production-ready models that span various domains, including Machine Learning (ML), Artificial Intelligence (AI), Natural Language Processing (NLP), Reinforcement Learning (RL), real-time and distributed systems. As an Applied Scientist on our AI Acceleration Team, you will be at the forefront of transforming how Audible harnesses the power of AI to enhance productivity, unlock new value, and reimagine how we work. In this unique role, you'll apply ML/AI approaches to solve complex real-world problems while helping build the blueprint for how Audible works with AI. ABOUT YOU You are passionate about applying scientific approaches to real business challenges, with deep expertise in Machine Learning, Natural Language Processing, GenAI, and large language models. You thrive in collaborative environments where you can both build solutions and empower others to leverage AI effectively. You have a track record of developing production-ready models that balance scientific excellence with practical implementation. You're excited about not just building AI solutions, but also creating frameworks, evaluation methodologies, and knowledge management systems that elevate how entire organizations work with AI. As an Applied Scientist, you will... - Design and implement innovative AI solutions across our three pillars: driving internal productivity, building the blueprint for how Audible works with AI, and unlocking new value through ML & AI-powered product features - Develop machine learning models, frameworks, and evaluation methodologies that help teams streamline workflows, automate repetitive tasks, and leverage collective knowledge - Enable self-service workflow automation by developing tools that allow non-technical teams to implement their own solutions - Collaborate with product, design and engineering teams to rapidly prototype new product ideas that could unlock new audiences and revenue streams - Build evaluation frameworks to measure AI system quality, effectiveness, and business impact - Mentor and educate colleagues on AI best practices, helping raise the AI fluency across the organization ABOUT AUDIBLE Audible is the leading producer and provider of audio storytelling. We spark listeners’ imaginations, offering immersive, cinematic experiences full of inspiration and insight to enrich our customers daily lives. We are a global company with an entrepreneurial spirit. We are dreamers and inventors who are passionate about the positive impact Audible can make for our customers and our neighbors. This spirit courses throughout Audible, supporting a culture of creativity and inclusion built on our People Principles and our mission to build more equitable communities in the cities we call home.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team is building next-generation personalization systems powered by Large Language Models. We are tackling novel research challenges to help customers discover products they'll love - at Amazon scale and latency requirements. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Science Manager, you will lead a team of scientists working at the frontier of LLM-based personalization. You will set the technical vision, drive the research agenda, and ensure your team delivers production-ready solutions. You will hire, mentor, and develop world-class scientists while fostering a culture of innovation and scientific rigor. You will partner closely with engineering and product teams to translate ambitious research into customer-facing impact, and represent your team's work to senior leadership. Please visit https://www.amazon.science for more information.
IL, Tel Aviv
We are looking for a Data Scientist to join our Prime Video team in Israel, focusing on personalizing customer experiences through Search and Recommendations. Our team leverages Machine Learning (ML) to deliver tailored content discovery, helping millions of customers find the entertainment they love. You will work on large-scale experimentation, measurement frameworks, and data-driven decision-making that directly shapes how customers interact with Prime Video. Key job responsibilities - Design metrics frameworks and evaluation systems to measure the quality, performance, and reliability of algorithmic solutions - Lead the design, execution, and analysis of A/B tests to validate product hypotheses and quantify customer impact - Communicate analytical findings and recommendations clearly to both technical teams and business stakeholders, driving data-informed decisions - Partner with Applied Scientists, Software Engineers, and Product Managers to define requirements, evaluate models, and drive data-informed product decisions - Act as the subject matter expert for data structures, metrics definitions, and analytical best practices - Identify opportunities for improving customer experience through deep-dive analyses of user behavior and algorithm performance
US, WA, Seattle
We are seeking a Senior Applied Scientist to join our team in developing pioneering AI research, Generative AI, Agentic AI, Large Language Models (LLMs), Diffusion and Flow Models, and other advanced Machine Learning and Deep Learning solutions for Amazon Selection and Catalog Systems, within the AI Lab Team. This role offers a unique opportunity to work on AI research and AI products that will shape the future of online shopping experiences. Our team operates at the forefront of AI research and development, working on challenges that directly impact millions of customers worldwide. We push the boundaries of AI at both the foundational and application layers. As a Senior Applied Scientist, you will have the chance to experiment with LLMs and deep learning techniques, apply your research to solve real-world problems at an unprecedented scale, and collaborate with experienced scientists to contribute to Amazon's scientific innovation. Join us in redefining the future of shopping. Your work will directly influence how customers interact with the world's largest online store. Key job responsibilities - Design and implement novel AI solutions for Amazon catalog of products - Develop and train state-of-the-art LLMs, Diffusion Models, and other Generative AI models - Build and deploy autonomous AI Agents in Amazon production ecosystem - Scale AI models to handle billions of diverse products across multiple languages and geographies - Conduct research in areas such as Autonomous AI Agents, Generative AI, Language Modeling, Multi-modality Computer Vision, Diffusion Models, Reinforcement Learning - Collaborate with cross-functional teams to integrate AI models into Amazon's production ecosystem - Contribute to the scientific community through publications and conference presentations
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Are you interested in building Agentic AI solutions that solve complex builder experience challenges with significant global impact? The Security Tooling team designs and builds high-performance AI systems using LLMs and machine learning that identify builder bottlenecks, automate security workflows, and optimize the software development lifecycle—empowering engineering teams worldwide to ship secure code faster while maintaining the highest security standards. As a Senior Applied Scientist on our Security Tooling team, you will focus on building state-of-the-art ML models to enhance builder experience and productivity. You will identify builder bottlenecks and pain points across the software development lifecycle, design and apply experiments to study developer behavior, and measure the downstream impacts of security tooling on engineering velocity and code quality. Our team rewards curiosity while maintaining a laser-focus on bringing products to market that empower builders while maintaining security excellence. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in builder experience and security automation, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform how builders interact with security tools and how organizations balance security requirements with developer productivity. Key job responsibilities • Design and implement novel AI/ML solutions for complex security challenges and improve builder experience • Drive advancements in machine learning and science • Balance theoretical knowledge with practical implementation • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results • Establish best practices for ML experimentation, evaluation, development and deployment You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life • Integrate ML models into production security tooling with engineering teams • Build and refine ML models and LLM-based agentic systems that understand builder intent • Create agentic AI solutions that reduce security friction while maintaining high security standards • Prototype LLM-powered features that automate repetitive security tasks • Design and conduct experiments (A/B tests, observational studies) to measure downstream impacts of tooling changes on engineering productivity • Present experimental results and recommendations to leadership and cross-functional teams • Gather feedback from builder communities to validate hypotheses About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.