Howard University's Founders Library is seen in the distance.
Howard University's Founders Library is seen in the distance. Howard is hosting AEASP “in support of increasing the pipeline of underrepresented minority economists.”
Oscar Merrida IV

Amazon to sponsor Howard University summer program aimed at increasing pipeline of minority economists

Howard University is the first Black college to host the American Economic Association Summer Training and Scholarship Program.

Howard University recently announced that it will host the American Economic Association Summer Training and Scholarship Program (AEASP) “in support of increasing the pipeline of underrepresented minority economists.” The program will be hosted at Howard for the next five years, and Amazon is sponsoring next summer’s program. Amazon first began discussions with Howard University about sponsoring AEASP about two years ago. The program, which aims to prepare “talented undergraduates for doctoral programs in economics and related disciplines,” will celebrate its 50th anniversary in 2024 at Howard.

"The lack of diversity in economics becomes self-reinforcing"

Four economists from diverse backgrounds shared how economics can address its diversity problem and talked about how their lives have shaped their work as economists.

That Howard, an historically Black college and university (HBCU) which produces more Black economics undergrads than any other institution, is hosting AEASP for the first time serves as a reminder of the progress the economics profession still must make.

The Caucus of Black Economists (later called the National Economics Association) first began exploring the issues of underrepresentation of minorities within the economics field in 1969. More than 50 years later, the economics profession is still grappling with structural issues. In fact, last January’s AEA conference in San Diego featured a panel titled, “How Can Economics Solve Its Race Problem.”

Rhonda Vonshay Sharpe and Omari H. Swinton standing in front of Howard University.
Rhonda Vonshay Sharpe, left, and Omari H. Swinton, right, are seen posing on the campus of Howard University. They discussed why economics still struggles with diversity.
Oscar Merrida IV

Omari H. Swinton, the chair of Howard University’s Department of Economics, who is both an alumni and the current director of the AEA summer program, as well as the past president of the National Economics Association, has observed that, “The vast majority of institutions in the US have never had a Black economist on staff, and the vast majority of schools have never graduated a Black PhD economist.”

Rhonda Vonshay Sharpe, the founder and president of the Women's Institute for Science, Equity, and Race (WISER), which is also a partner in next summer’s AEASP program, authored a research paper in 2019 that found that from 1966 to 2015, “the number of undergraduate economics degrees conferred to Black women was stagnant, and there was a decrease in the number of doctorates conferred to Black men.”

So why does the economics field still have such a massive disparity in minority representation? What needs to happen for systemic progress to be made? Amazon Science sat down with Sharpe and Swinton to ask those questions, as well as why Howard hosting the summer program is so significant, and what advice they would give to students considering economics as a major or profession. We also talked with Amazon chief economist Pat Bajari to find out why Amazon is sponsoring next summer’s AEASP program, and why he thinks diversity within the economics profession is essential.

A Howard University sign on the Howard campus
The AEASP will celebrate its 50th anniversary in 2024 at Howard University.
Oscar Merrida IV

Why does economics still have such a significant diversity problem?

Omari H. Swinton: I don't know that economics, as a profession, has really agreed that there's a problem. I think that's one of the big issues—we’ll say there's a problem, but nothing ever changes. You oftentimes hear people say things like, ‘We want to increase diversity’ but don't actually make any changes. They just say that that's something that they want to do.

It’s not as if these things haven't been out there. There are people out there who have dedicated their lives to bringing these types of issues to the forefront. I go back to Sandy Darity as an example. If you read from his earlier work, he's talking about these issues. Gregory Price has chronicled which institutions have Black economists in them. Rhonda has been looking at these issues for years.

Whether the economics profession is really ready to change is the issue. There have been a lot of people who have been talking about these issues for years. Others have come out and mentioned these problems more recently, but they ignore the fact that people have been talking about issues of underrepresentation for years.

Rhonda Vonshay Sharpe on the campus of Howard University
Rhonda Vonshay Sharpe says economics needs to define what diversity means. "If you don't define it, you can't measure it, or hold folks accountable."
Oscar Merrida IV

Rhonda Vonshay Sharpe: I narrow the problem down to be three things: 1) Economics has never defined what diversity means, and if you don't define it, you can't measure it, or hold folks accountable; 2) We don't have accurate data to track progress. We need to collect data that can be disaggregated by characteristics that have been used to limit participation in the profession. For example, when you talk about women, that usually means white women, and when we talk in terms of race, then you're really talking about men, and both of those descriptors are biased; and 3) As Omari said, there's enormous erasure happening. People have been doing this a long time, yet newcomers who have recently gotten tenure suddenly feel bad. They are handed a mic as if they are now the authorities. They don’t bother to understand whose shoulders they're standing on.

What needs to happen to address this problem? What role can academic institutions and companies like Amazon play?

Sharpe: I don't think the answer is to hire more Black economists. I really don't. And here is why: Because I think that when people say, ‘hire more Black economists’, people do just that, they hire Black economists. They do not think about whether or not those Black economists are bringing lived experiences that are going to help you craft policies to better interact with your customers.

One of the things I've been saying to folks recently is we need to talk more about structural classism and the ways in which we treat folks who are poor. So, it's not just about hiring Black economists, it's not about hiring Hispanic economists. It's about hiring folks who have lived experience in the US that will get at the inequality and related issues. That's not going to be solved just by hiring an economist because they are non-white.

Omari H. Swinton, the chair of Howard University's Department of Economics, on Howard's campus.
Omari H. Swinton says the AEASP program coming to Howard "is important because this is what our program is designed to do: increase minority participation in the economics profession."
Oscar Merrida IV

Swinton: If you say you want to diversify the profession, then stop looking at things that are not really problems. For example, there's not really a pipeline problem. You can ask almost any economics professor who teaches Principles of Economics, and most will tell you that is probably one of the worst classes to use if you want somebody to be interested in economics as a profession. But it really hasn't changed in years.

One change that we're making in the summer program is the experiential internship, or experiential learning. We’re going to place students with think tanks and corporations to actually see what an economist outside of the academy does. Everybody that gets a PhD in economics isn't going to be able to get a job as a professor. What does it look like to be an economist at Amazon? What does it look like to be an economist at the Census Bureau or at Brookings? Those are entirely different experiences. We’re trying to partner with as many different organizations as possible.

Hopefully we'll see change at those institutions, because students will come to the summer program, have that experience, and want to go back to those institutions. Rather than wanting to be a professor, they will, for example, say, ‘I want to be an economist at the Census Bureau, because I believe this research is important.’ It’s important for organizations, public and private, to be available to students, so they can see the type of experiences they can have if they work for you.

Pat Bajari
Pat Bajari, Amazon vice president and chief economist
Carl Clark, Amazon Imaging Studio

Pat Bajari: As an economist, I have always thought of this is in terms of diminishing returns. If you always have the same type of viewpoint, and keep hiring replicas of that viewpoint, the returns you get from that eventually decrease. Having different viewpoints allows you to do better work. And because we serve a large and diverse base of customers, we have a large and diverse base of problems. We want to take a leading role in supporting a new generation of economists from underrepresented minorities—it is not only the right thing to do, but it will also help bring strong and diverse voices that will create an even more inclusive customer experience.

When individuals come from different backgrounds, they bring different perspectives to the table. You do better work when you have different perspectives.
Pat Bajari

Swinton: One thing organizations can do is find programs that are actually successful at achieving the types of goals they’re pursuing. For example, some of the research done by Becker et al. shows that about 20 percent of Blacks that have PhDs in economics have attended the AEASP program. By helping support Howard in hosting AEASP in this first year, Amazon is doing that. Without Amazon’s support, Howard wouldn't be able to host the AEA summer program at all. We certainly hope others will follow Amazon’s lead.

What is the significance of the summer program coming to Howard?

Swinton: The summer program is extremely important in my path as an economist. My first cohort of economists were the people that I met through the summer program. Howard is the number one producer as an undergraduate feeder of Blacks who go on to get PhDs in economics. This is our mission and one of our goals as an institution and as a department, and I think the AEA summer program coming to Howard is important because this is what our program is designed to do: increase minority participation in the economics profession.

The National Economics Association summer program came out of Marcus Alexis’ mind as a program to help get minorities interested in economics. For the AEASP program to come to Howard at this point in time is a great honor. It’s an honor to be the first HBCU to host the summer program.

Sharpe: I'm excited to see a program that's going to be led by Blacks, which I think is incredibly important, as the program will celebrate 50 years while it's at Howard in 2024. It just feels full circle in terms of thinking about Marcus Alexis, who was a Black economist, and then having the program 50 years later be at an institution that is the number one producer of Black economists. That's incredibly exciting.

Finally, what advice would you give to someone considering whether to pursue a degree in economics? Why is economics such an important field?

Bajari: A lot of economics is understanding people's material wellbeing. Who has low wages? Who has high wages? If you take a given policy, whether that's central bank policy or interventions into labor markets, etcetera, these things deeply, deeply, deeply affect people's lives, people's material outcomes. What they can purchase and where they can live and where they can send their kids to school and so forth. It's an important set of questions, and they range from micro things about what happens to the individual, to macro things, such as how the whole world is evolving and changing in response to things like COVID-19.

Howard University's Founders Library
Howard University's Founders Library is seen here. Howard is the first Black college to host AEASP.
Oscar Merrida IV

If we change policy or somebody goes to college versus doesn't go to college, what are the implications of those economic variables? I know this is what attracted me to economics. As a young person, growing up pretty poor in rural Minnesota, I was interested in the world and how it worked. And I liked economics because it brought math and data and scientific formalism to those questions. That's not the only way you can look at those questions, or the only way you should look at them, but it’s one way that's highly useful.

Sharpe: For students pursuing a PhD in economics, my main advice is to pick a PhD program that's a good fit for you. Many students think that if you don't go to a top program, you can't have a successful career. That’s not true. I went to Claremont Graduate University, not highly ranked, but I had an amazing time as a graduate student. I loved it. My mentee when I was in graduate school was Olugbenga Ajilore who’s at CAP (Center for American Progress) now, who is a rock star right now in terms of being in the news and asking people to think about rural communities. He and I didn't go to top economics departments, but we went to places that were good fits for us, and that's incredibly important.

Bajari: “Technology economics” is a booming field. The largest conference held by the National Association of Business Economists is now the tech economics conference. It’s larger than their annual conference now, because it's been an explosive area of job growth for young people. We are one of the larger private sector employers of economists. When you're in that role, you have an obligation to demonstrate leadership. We saw sponsorship of AEASP as an opportunity to expose young PhDs to this emerging field. I thought Howard was very thoughtful about their proposal, and I'm hoping AEASP can help us establish a pipeline of highly qualified candidates.

Swinton: I talk to students about this all the time. You want to make a change, and you want to be a policy maker? Be an economist. You want to go into business and work on Wall Street, make a lot of money? Be an economist. Economics is one of the most useful majors because it allows you the opportunity you to go out and do a wide variety of things based on the basic training you obtain.

Applications for the summer program are open and the deadline to apply is January 31, 2021. To apply, visit economics.howard.edu/aeasp. The program will be held May 27 to July 25, 2021, and be offered in Washington, D.C., contingent upon COVID-19 restrictions.

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Sr. Applied Scientist, to support the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning through human feedback and complex reasoning; with a focus across text, image, and video modalities. As an Sr. Applied Scientist, you will play a critical role in supporting the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI Design and execute experiments to evaluate the performance of different algorithms (PT, SFT, RL) and models, and iterate quickly to improve results Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports About the team We are passionate scientists dedicated to pushing the boundaries of innovation in Gen AI with focus on Software Development use cases.
IN, HR, Gurugram
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced ML systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real-world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning team for India Consumer Businesses. Machine Learning, Big Data and related quantitative sciences have been strategic to Amazon from the early years. Amazon has been a pioneer in areas such as recommendation engines, ecommerce fraud detection and large-scale optimization of fulfillment center operations. As Amazon has rapidly grown and diversified, the opportunity for applying machine learning has exploded. We have a very broad collection of practical problems where machine learning systems can dramatically improve the customer experience, reduce cost, and drive speed and automation. These include product bundle recommendations for millions of products, safeguarding financial transactions across by building the risk models, improving catalog quality via extracting product attribute values from structured/unstructured data for millions of products, enhancing address quality by powering customer suggestions We are developing state-of-the-art machine learning solutions to accelerate the Amazon India growth story. Amazon India is an exciting place to be at for a machine learning practitioner. We have the eagerness of a fresh startup to absorb machine learning solutions, and the scale of a mature firm to help support their development at the same time. As part of the India Machine Learning team, you will get to work alongside brilliant minds motivated to solve real-world machine learning problems that make a difference to millions of our customers. We encourage thought leadership and blue ocean thinking in ML. Key job responsibilities Use machine learning and analytical techniques to create scalable solutions for business problems Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes Design, develop, evaluate and deploy, innovative and highly scalable ML models Work closely with software engineering teams to drive real-time model implementations Work closely with business partners to identify problems and propose machine learning solutions Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model maintenance Work proactively with engineering teams and product managers to evangelize new algorithms and drive the implementation of large-scale complex ML models in production Leading projects and mentoring other scientists, engineers in the use of ML techniques About the team International Machine Learning Team is responsible for building novel ML solutions that attack India first (and other Emerging Markets across MENA and LatAm) problems and impact the bottom-line and top-line of India business. Learn more about our team from https://www.amazon.science/working-at-amazon/how-rajeev-rastogis-machine-learning-team-in-india-develops-innovations-for-customers-worldwide
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Principal Applied Scientist with a strong deep learning background, to lead the development of industry-leading technology with multimodal systems. As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences. About the team Prime Video Recommendation Science team owns science solution to power recommendation and personalization experience on various Prime Video surfaces and devices. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Do you enjoy solving challenging problems and driving innovations in research? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? We are looking for builders, innovators, and entrepreneurs who want to bring their ideas to reality and improve the lives of millions of customers. As a Research Science intern focused on Operations Research and Optimization intern, you will be challenged to apply theory into practice through experimentation and invention, develop new algorithms using modeling software and programming techniques for complex problems, implement prototypes and work with massive datasets. As you navigate through complex algorithms and data structures, you'll find yourself at the forefront of innovation, shaping the future of Amazon's fulfillment, logistics, and supply chain operations. Imagine waking up each morning, fueled by the excitement of solving intricate puzzles that have a direct impact on Amazon's operational excellence. Your day might begin by collaborating with cross-functional teams, exchanging ideas and insights to develop innovative solutions. You'll then immerse yourself in a world of data, leveraging your expertise in optimization, causal inference, time series analysis, and machine learning to uncover hidden patterns and drive operational efficiencies. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Amazon has positions available for Operations Research Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Causal Inference, Time Series, Algorithms and Data Structures, Statistics, Operations Research, Machine Learning, Programming/Scripting Languages, LLMs In this role, you will gain hands-on experience in applying cutting-edge analytical techniques to tackle complex business challenges at scale. If you are passionate about using data-driven insights to drive operational excellence, we encourage you to apply. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life Develop and apply optimization, causal inference, and time series modeling techniques to drive operational efficiencies and improve decision-making across Amazon's fulfillment, logistics, and supply chain operations Design and implement scalable algorithms and data structures to support complex optimization systems Leverage statistical methods and machine learning to uncover insights and patterns in large-scale operations data Prototype and validate new approaches through rigorous experimentation and analysis Collaborate closely with cross-functional teams of researchers, engineers, and business stakeholders to translate research outputs into tangible business impact
US, CA, San Francisco
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Must be eligible and available for a full-time (40h/ week) 12 week internship between May 2026 and September 2026. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Unleash Your Potential at the Forefront of AI Innovation At Amazon, we're on a mission to revolutionize the way the world leverages machine learning. Amazon is seeking graduate student scientists who can turn revolutionary theory into awe-inspiring reality. As an Applied Science Intern focused on Information and Knowledge Management in Machine Learning, you will play a critical role in developing the systems and frameworks that power Amazon's machine learning capabilities. You'll be at the epicenter of this transformation, shaping the systems and frameworks that power our cutting-edge AI capabilities. Imagine a role where you develop intuitive tools and workflows that empower machine learning teams to discover, reuse, and build upon existing models and datasets, accelerating innovation across the company. You'll leverage natural language processing and information retrieval techniques to unlock insights from vast repositories of unstructured data, fueling the next generation of AI applications. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Knowledge Graphs and Extraction, Neural Networks/GNNs, Data Structures and Algorithms, Time Series, Machine Learning, Natural Language Processing, Deep Learning, Large Language Models, Graph Modeling, Knowledge Graphs and Extraction, Programming/Scripting Languages In this role, you'll collaborate with brilliant minds to develop innovative frameworks and tools that streamline the lifecycle of machine learning assets, from data to deployed models in areas at the intersection of Knowledge Management within Machine Learning. You will conduct groundbreaking research into emerging best practices and innovations in the field of ML operations, knowledge engineering, and information management, proposing novel approaches that could further enhance Amazon's machine learning capabilities. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.
US, CA, Sunnyvale
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions, set the standard for scientific excellence, and make decisions that affect the way we build and integrate algorithms. A Principal Applied Scientist will solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader; develop solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility; and tackle intrinsically hard problems, acquiring expertise as needed. Principal Applied Scientists are expected to decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location; and scrutinize and review experimental design, modeling, verification and other research procedures. You also probe assumptions, illuminate pitfalls, and foster shared understanding; align teams toward coherent strategies; and educate keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. AGI Principal Applied Scientists help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, inventing new machine learning techniques, conducting rigorous experiments, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. A Principal Applied Scientist will participate in organizational planning, hiring, mentorship and leadership development. You will also be build scalable science and engineering solutions, and serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). A day in the life About the team Amazon’s AGI team is focused on building foundational AI to solve real-world problems at scale, delivering value to all existing businesses in Amazon, and enabling entirely new services and products for people and enterprises around the world.
US, WA, Seattle
Revolutionize the Future of AI at the Frontier of Applied Science Are you a brilliant mind seeking to push the boundaries of what's possible with artificial intelligence? Join our elite team of researchers and engineers at the forefront of applied science, where we're harnessing the latest advancements in natural language processing, deep learning, and generative AI to reshape industries and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge technologies such as large language models, transformers, and neural networks. You'll dive deep into complex challenges, fine-tuning state-of-the-art models, developing novel algorithms for named entity recognition, and exploring the vast potential of generative AI. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in statistics, recommender systems, and question answering to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for LLM & GenAI Applied Science Internships in, but not limited to, Bellevue, WA; Boston, MA; Cambridge, MA; New York, NY; Santa Clara, CA; Seattle, WA; Sunnyvale, CA; Pittsburgh, PA. Key job responsibilities We are particularly interested in candidates with expertise in: LLMs, NLP/NLU, Gen AI, Transformers, Fine-Tuning, Recommendation Systems, Deep Learning, NER, Statistics, Neural Networks, Question Answering. In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and GenAI. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on recommendation systems, question answering, deep learning and generative AI. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Collaborate with cross-functional teams to tackle complex challenges in natural language processing, computer vision, and generative AI. - Fine-tune state-of-the-art models and develop novel algorithms to push the boundaries of what's possible. - Explore the vast potential of generative AI and its applications across industries. - Attend cutting-edge research seminars and engage in thought-provoking discussions with industry luminaries. - Leverage state-of-the-art computing infrastructure and access to the latest research papers to fuel your innovation. - Present your groundbreaking work and insights to the team, fostering a culture of knowledge-sharing and continuous learning.
US, WA, Seattle
Unlock the Future with Amazon Science! Calling all visionary minds passionate about the transformative power of machine learning! Amazon is seeking boundary-pushing graduate student scientists who can turn revolutionary theory into awe-inspiring reality. Join our team of visionary scientists and embark on a journey to revolutionize the field by harnessing the power of cutting-edge techniques in bayesian optimization, time series, multi-armed bandits and more. At Amazon, we don't just talk about innovation – we live and breathe it. You'll conducting research into the theory and application of deep reinforcement learning. You will work on some of the most difficult problems in the industry with some of the best product managers, scientists, and software engineers in the industry. You will propose and deploy solutions that will likely draw from a range of scientific areas such as supervised, semi-supervised and unsupervised learning, reinforcement learning, advanced statistical modeling, and graph models. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of AI and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Machine Learning Applied Science Internships in, but not limited to Arlington, VA; Bellevue, WA; Boston, MA; New York, NY; Palo Alto, CA; San Diego, CA; Santa Clara, CA; Seattle, WA. Key job responsibilities We are particularly interested in candidates with expertise in: Optimization, Programming/Scripting Languages, Statistics, Reinforcement Learning, Causal Inference, Large Language Models, Time Series, Graph Modeling, Supervised/Unsupervised Learning, Deep Learning, Predictive Modeling In this role, you will work alongside global experts to develop and implement novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of Reinforcement Learning and Optimization within Machine Learning. You will tackle challenging, groundbreaking research problems on production-scale data, with a focus on developing novel RL algorithms and applying them to complex, real-world challenges. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. A day in the life - Develop scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. - Design, development and evaluation of highly innovative ML models for solving complex business problems. - Research and apply the latest ML techniques and best practices from both academia and industry. - Think about customers and how to improve the customer delivery experience. - Use and analytical techniques to create scalable solutions for business problems.