DynamoDB 10-year anniversary Swami Sivasubramanian and Werner Vogels
The early success of the Dynamo database encouraged Swaminathan (Swami) Sivasubramanian (top right), Werner Vogels (lower right) and colleagues to write the Dynamo research paper, and share it at the 2007 ACM Symposium on Operating Systems Principles (SOSP conference). The Dynamo paper served as a catalyst to create the category of distributed database technologies commonly known as NoSQL. Dynamo is the progenitor to Amazon DynamoDB, the company's cloud-based NoSQL database service that launched 10 years ago today.

Amazon’s DynamoDB — 10 years later

Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Ten years ago, Amazon Web Services (AWS) launched Amazon DynamoDB, a fast, flexible NoSQL database service that offers single-digit millisecond performance at any scale.

In an online post on Jan. 18, 2012, Werner Vogels, chief technical officer at Amazon.com, wrote: “Today is a very exciting day as we release Amazon DynamoDB, a fast, highly reliable and cost-effective NoSQL database service designed for internet scale applications. DynamoDB is the result of 15 years of learning in the areas of large scale non-relational databases and cloud services.

“Several years ago we published a paper on the details of Amazon’s Dynamo technology, which was one of the first non-relational databases developed at Amazon,” Vogels continued. “The original Dynamo design was based on a core set of strong distributed systems principles resulting in an ultra-scalable and highly reliable database system. Amazon DynamoDB, which is a new service, continues to build on these principles, and also builds on our years of experience with running non-relational databases and cloud services, such as Amazon SimpleDB and Amazon S3, at scale. It is very gratifying to see all of our learning and experience become available to our customers in the form of an easy-to-use managed service.”

One of Vogels’s coauthors on the 2007 Dynamo paper, and a key contributor to the development of DynamoDB was Swaminathan (Swami) Sivasubramanian, then an Amazon research engineer working on the design, implementation, and analysis of distributed systems technology, and now vice president of Database, Analytics, and Machine Learning at AWS.

More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.
Swami Sivasubramanian

A decade after the launch of DynamoDB, Sivasubramanian says we’re “experiencing an amazing era of renaissance when it comes to data and machine learning.”

“We now live in an era where you can actually store your data in these databases and quickly start building your data lakes within Amazon S3 and then analyze them using Amazon SageMaker in a matter of a couple of weeks, if not days. That is simply remarkable.

“We now have the opportunity to help customers gain insights from their data faster,” Sivasubramanian added. “This is a mission that truly excites me because customers really want to put their data to work to enable data-driven decision making. More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.”

To mark the 10-year anniversary of the launch of Amazon DynamoDB, Amazon Science asked Sivasubramanian three questions about the origins of DynamoDB, its progenitor Dynamo, and the future of DynamoDB.

  1. Q. 

    You were a co-author on the 2007 Dynamo paper. At that time, the industry was transitioning to a scale out vs scale up architectural approach. Can you tell us about the origin story for Dynamo?

    A. 

    To get to 2007, I have to start with 2004, 2005. Even as I was working on my PhD [Sivasubramanian earned his PhD in computer science in 2006 from Vrije Universiteit Amsterdam] I was contemplating where I would work. Ultimately what convinced me to join Amazon as a research engineer intern [2005] was seeing how Amazon was pushing the boundaries of scale.

    I admit I was a little bit of a skeptic as an outsider. At that time, AWS didn’t even exist. But when I joined, I soon had an ‘a ha moment’ that, yes, Amazon was an e-commerce company, but actually it was a technology company that also did e-commerce. It was an interesting revelation for me seeing how Amazon had to invent so many new technologies to even support its e-commerce workload.

    As an intern, I was working as an engineer on amazon.com and during our peak holiday traffic time we experienced a serious scaling failure due to a database transaction deadlocking issue. The problem was caused by the relational database from a commercial vendor that we were using at the time. A bunch of engineers got together and wrote what we call a COE, a correction of errors document in which we say what happened, what we learned, how we fixed the issue, and how we would avoid a recurrence.

    I don't know if it was me being naive or just being confident in the way only a 20 something intern can be, but I asked the question ‘Why are we using a relational database for this? These workloads don't need the SQL level of complexity and transactional guarantees.’

    Peter Vosshall presents Dynamo at 2007 ACM Symposium on Operating System Principles (SOSP).

    This led us to start rethinking how we architected our underlying data stores altogether. At the time there wasn’t a scalable non-relational database. This is what led us to build the original Dynamo, and which led us to write the paper. Dynamo was not the only thing we were rethinking about our architecture at this time. We realized we also needed a scalable storage system, which led us to build S3, and we also realized that we needed a more managed relational database with the ability to do automated replication, failover, and backups/restore, which led us to build Amazon RDS.

    One rule we had related to writing the original Dynamo paper was not to publish when we developed the original design, but first let Dynamo run in production supporting several Amazon.com services, so that the Dynamo paper would be an end-to-end experience paper. Werner and I felt very strongly about this because we didn't want it to be just another academic paper. That’s why I was very proud when 10 years later that paper was awarded a test of time award.

  2. Q. 

    What’s the origin story for DynamoDB, and how has the technology evolved in the past decade?

    A. 

    The idea behind DynamoDB developed from discussions with customers like Don MacAskill, the CEO of SmugMug and Flickr. More and more companies like Don’s were web-based companies, and the number of users online was exploding. The traditional relational database model of storing all the data in a single box was not scaling well. It forced the complexity back on the users to shard their relational databases and then manage all the partitioning and re-partitioning and so forth.

    This wasn’t new to us; these challenges are why we built the original Dynamo, but it wasn’t yet a service. It was a software system that Amazon engineers had to operate. At some point in one of our customer advisory board meetings, Don said, ‘You all started Dynamo and showed what is possible with a scalable non-relational database system. Why can't we have that as an external service?’

    All senior AWS executives were there, and honestly it was a question we were asking ourselves at the time. Don wasn’t the only customer asking for it, more and more customers wanted that kind of scalable database where they didn't have to deal with partitioning and re-partitioning, and they also wanted extreme availability. This led to the genesis of our thinking about what it would take to build a scalable cloud database that wasn’t constrained by the SQL API.

    DynamoDB was different from the original Dynamo because it actually exposed several of the original Dynamo components via very easy-to-use cloud controls. Our customers didn’t have to provision clusters anymore. They could just create a table and seamlessly scale it up and down; they didn’t have to deal with any of the operations, or even install a single library to operate a database. This evolution of Dynamo to DynamoDB was important because we truly embraced the cloud, and its elasticity and scalability in an unprecedented manner.

    Werner Vogels, vice president and chief technology officer of Amazon.com, introduced DynamoDB on Jan. 18, 2012 with this post in which he said DynamoDB "brings the power of the cloud to the NoSQL database world."

    We launched it on January 18th, 2012 and it was a hit right out of the gate. Don’s company and several others started using it. Right from the launch, not just elasticity, but single-digit latency performance was something that resonated really well with customers. We had innovated quite a bit, all the way from the protocol layer, to the underlying storage layer for SSD storage, and other capabilities that we enabled.

    One of the first production projects was a customer with an interesting use case; they were doing a Super Bowl advertisement. Because DynamoDB was extremely elastic it could seamlessly scale up to 100,000 writes a second, and then scale down after the Super Bowl was over so they wouldn’t incur costs anymore. This was a big deal; it wasn’t considered possible at that time. It seems super obvious now, but at that time databases were not that elastic and scalable.

    It was a bold vision. But DynamoDB’s built-for-the-cloud architecture made all of these scale-out use cases possible, and that is one of the reasons why DynamoDB now powers multiple high-traffic Amazon sites and systems including Alexa, Amazon.com, and all Amazon fulfillment centers. Last year, over the course of our 66-hour Prime Day, these sources made trillions of API calls and DynamoDB maintained high availability with single-digit millisecond performance, peaking at 89.2 million requests per second.

    And since 2012, we have added so many innovations, not just for its underlying availability, durability, security and scale, but ease-of-use features as well.

    Swami Sivasubramanian, AWS | CUBE Conversation, January 2022

    We’ve gone beyond key value store and now support not just a hash-based partition but also range-based partitioning, and we’ve added support for secondary indexes to enable more complex query capabilities —without compromising on scale or availability.

    We also now support scalable change data capture through Amazon Kinesis Data Steams for DynamoDB. One of the things I strongly believe with any database is that it should not be an island; it can’t be a dead end. It should generate streams of what data changed and then use that to bridge it to your analytics applications, or other data stores.

    We have continued innovating across the board on features like backup and restore. For a large-scale database system like DynamoDB with millions of partitions, doing backup and restore isn’t easy, and a lot of great innovations went into making this experience easy for customers.

    We have also added the ability to do global tables so customers can operate across multiple regions. And then we added the ability to do transactions with DynamoDB, all with an eye on how do you continue to keep DynamoDB’s mission around availability and scalability?

    Recently we also launched the ability to reduce the cost of storage with the Amazon DynamoDB Standard Infrequent Access table class. Customers often need to store data long term, and while this older data may be accessed infrequently, it must remain highly available. For example, end users of social media apps rarely access older posts and uploaded images, but the app must ensure that these artifacts are immediately accessible when requested. This infrequently accessed data can represent significant storage expense for customers due to their growing volume and the relatively high cost of storing this data, so customers optimize costs in these cases by writing code to move older, less frequently accessed data from DynamoDB to lower cost storage alternatives like Amazon S3. So at the most recent re:Invent we launched Amazon DynamoDB Standard-Infrequent Access table class, a new cost-efficient table class to store infrequently accessed data, yet maintain the high availability and performance of DynamoDB.

    We are on this journey of maintaining the original vision of DynamoDB as the guiding light, but continue to innovate to help customers with use cases around ease of querying, the ability to do complex, global transaction replication, while also continuing to manage costs.

  3. Q. 

    What might the next 10 years bring?

    A. 

    When we started with DynamoDB ten years ago, the cloud itself was something customers were just starting to understand better — its benefits and what they could do.

    Now we live in a world where cloud is the new normal in terms of how customers are building IT applications, and scale is also the new normal because every app is being built to handle viral moments. DynamoDB itself will be on this continuous journey where we will continue to innovate on behalf of customers. One of the things we will continue moving toward is an end-to-end data strategy mission because, as I mentioned earlier, no database is an island.

    Customers no longer want to just store and query the data in their databases. They then want to analyze that data to create value, whether that’s a better personalization or recommendation engine, or a forecasting system that you can run predictive analytics against using machine learning. Connecting the dots end to end, and continuing to make DynamoDB more secure, more available, more performant, and easier to use will be our never-ending journey.

Research areas

Related content

US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
Do you want to create intelligent, adaptable robots with global impact? We are seeking an experienced Applied Science Manager to lead a team of talented applied scientists and software engineers developing and deploying advanced manipulation strategies and algorithms. You will drive innovation that enables manipulation in high-contact, high-density, and diverse conditions with the speed and reliability that will delight our customers. Collaborating with cross-functional teams across hardware, software, and science, you will deliver reliable and high-performing solutions that will scale across geographies, applications, and conditions. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a disruptor, prolific innovator, and a reputed problem solver—someone who truly enables robotics to significantly impact the lives of millions of consumers. A day in the life - Prioritize being a great people manager: motivating, rewarding, and coaching your diverse team is the most important part of this role. You will recruit and retain top talent and excel in people and performance management tasks. - Set a vision for the team and create the technical roadmap that deliver results for customers while thinking big for future applications. - Guide the research, design, deployment, and evaluation of complex motion planning and control algorithms for contact-rich, cluttered, real-world manipulation problems. - Work closely with perception, hardware, and software teams to create integrated robotic solutions that are better than the sum of their parts. - Implement best practices in applied research and software development, managing project timelines, resources, and deliverables effectively. Amazon offers a full range of benefits for you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, WA, Seattle
Amazon Economics is seeking Structural Economist (STRUC) Interns who are passionate about applying structural econometric methods to solve real-world business challenges. STRUC economists specialize in the econometric analysis of models that involve the estimation of fundamental preferences and strategic effects. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to model strategic decision-making and inform business optimization, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As a STRUC Economist Intern, you'll specialize in structural econometric analysis to estimate fundamental preferences and strategic effects in complex business environments. Your responsibilities include: - Analyze large-scale datasets using structural econometric techniques to solve complex business challenges - Applying discrete choice models and methods, including logistic regression family models (such as BLP, nested logit) and models with alternative distributional assumptions - Utilizing advanced structural methods including dynamic models of customer or firm decisions over time, applied game theory (entry and exit of firms), auction models, and labor market models - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including pricing analysis, competition modeling, strategic behavior estimation, contract design, and marketing strategy optimization - Helping business partners formalize and estimate business objectives to drive optimal decision-making and customer value - Build and refine comprehensive datasets for in-depth structural economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Reduced Form Causal Analysis (RFCA) Economist Interns who are passionate about applying econometric methods to solve real-world business challenges. RFCA represents the largest group of economists at Amazon, and these core econometric methods are fundamental to economic analysis across the company. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to analyze causal relationships and inform strategic business decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an RFCA Economist Intern, you'll specialize in econometric analysis to determine causal relationships in complex business environments. Your responsibilities include: - Analyze large-scale datasets using advanced econometric techniques to solve complex business challenges - Applying econometric techniques such as regression analysis, binary variable models, cross-section and panel data analysis, instrumental variables, and treatment effects estimation - Utilizing advanced methods including differences-in-differences, propensity score matching, synthetic controls, and experimental design - Building datasets and performing data analysis at scale - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including program evaluation, elasticity estimation, customer behavior analysis, and predictive modeling that accounts for seasonality and time trends - Build and refine comprehensive datasets for in-depth economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Amazon Economics is seeking Forecasting, Macroeconomics and Finance (FMF) Economist Interns who are passionate about applying time-series econometric methods to solve real-world business challenges. FMF economists interpret and forecast Amazon business dynamics by combining advanced time-series statistical methods with strong economic analysis and intuition. In this full-time internship (40 hours per week, with hourly compensation), you'll work with large-scale datasets to forecast business trends and inform strategic decisions, gaining hands-on experience that's directly applicable to dissertation writing and future career placement. Key job responsibilities As an FMF Economist Intern, you'll specialize in time-series econometric analysis to understand, predict, and optimize Amazon's business dynamics. Your responsibilities include: - Analyze large-scale datasets using advanced time-series econometric techniques to solve complex business challenges - Applying frontier methods in time series econometrics, including forecasting models, dynamic systems analysis, and econometric models that combine macro and micro data - Developing formal models to understand past and present business dynamics, predict future trends, and identify relevant risks and opportunities - Building datasets and performing data analysis at scale using world-class data tools - Collaborating with economists, scientists, and business leaders to develop data-driven insights and strategic recommendations - Tackling diverse challenges including analyzing drivers of growth and profitability, forecasting business metrics, understanding how customer experience interacts with external conditions, and evaluating short, medium, and long-term business dynamics - Build and refine comprehensive datasets for in-depth time-series economic analysis - Present complex analytical findings to business leaders and stakeholders
US, WA, Seattle
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
CA, BC, Vancouver
The Alexa Daily Essentials team delivers experiences critical to how customers interact with Alexa as part of daily life. Alexa users engage with our products across experiences connected to Timers, Alarms, Calendars, Food, and News. Our experiences include critical time saving techniques, ad-supported news audio and video, and in-depth kitchen guidance aimed at serving the needs of the family from sunset to sundown. As a Data Scientist on our team, you'll work with complex data, develop statistical methodologies, and provide critical product insights that shape how we build and optimize our solutions. You will work closely with your Analytics and Applied Science teammates. You will build frameworks and mechanisms to scale data solutions across our organization. If you are passionate about redefining how AI can improves everyone's daily life, we’d love to hear from you. Key job responsibilities Problem-Solving - Analyze complex data (including healthcare data, experimental data, and large-scale datasets) to identify patterns, inform product decisions, and understand root causes of anomalies. - Develop analysis and modeling approaches to drive product and engineering actions to identify patterns, insights, and understand root causes of anomalies. Your solutions directly improve the customer experience. - Independently work with product partners to identify problems and opportunities. Apply a range of data science techniques and tools to solve these problems. Use data driven insights to inform product development. Work with cross-disciplinary teams to mechanize your solution into scalable and automated frameworks. Data Infrastructure - Build data pipelines, and identify novel data sources to leverage in analytical work - both from within Alexa and from cross Amazon - Acquire data by building the necessary SQL / ETL queries Communication - Excel at communicating complex ideas to technical and non-technical audiences. - Build relationships with stakeholders and counterparts. Work with stakeholders to translate causal insights into actionable recommendations - Force multiply the work of the team with data visualizations, presentations, and/or dashboards to drive awareness and adoption of data assets and product insights - Collaborate with cross-functional teams. Mentor teammates to foster a culture of continuous learning and development
US, WA, Seattle
The Automated Reasoning Group in the AWS Neuron Compiler team is looking for an Applied Scientist to work on the intersection of Artificial Intelligence and program analysis to raise the code quality bar in our state-of-the-art deep learning compiler stack. This stack is designed to optimize application models across diverse domains, including Large Language and Vision, originating from leading frameworks such as PyTorch, TensorFlow, and JAX. Your role will involve working closely with our custom-built Machine Learning accelerators, Inferentia and Trainium, which represent the forefront of AWS innovation for advanced ML capabilities, and is the underpinning of Generative AI. In this role as an Applied Scientist, you'll be instrumental in designing, developing, and deploying analyzers for ML compiler stages and compiler IRs. You will architect and implement business-critical tooling, publish cutting-edge research, and mentor a brilliant team of experienced scientists and engineers. You will need to be technically capable, credible, and curious in your own right as a trusted AWS Neuron engineer, innovating on behalf of our customers. Your responsibilities will involve tackling crucial challenges alongside a talented engineering team, contributing to leading-edge design and research in compiler technology and deep-learning systems software. Strong experience in programming languages, compilers, program analyzers, and program synthesis engines will be a benefit in this role. A background in machine learning and AI accelerators is preferred but not required. A day in the life Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (IoT), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.