DynamoDB 10-year anniversary Swami Sivasubramanian and Werner Vogels
The early success of the Dynamo database encouraged Swaminathan (Swami) Sivasubramanian (top right), Werner Vogels (lower right) and colleagues to write the Dynamo research paper, and share it at the 2007 ACM Symposium on Operating Systems Principles (SOSP conference). The Dynamo paper served as a catalyst to create the category of distributed database technologies commonly known as NoSQL. Dynamo is the progenitor to Amazon DynamoDB, the company's cloud-based NoSQL database service that launched 10 years ago today.

Amazon’s DynamoDB — 10 years later

Amazon DynamoDB was introduced 10 years ago today; one of its key contributors reflects on its origins, and discusses the 'never-ending journey' to make DynamoDB more secure, more available and more performant.

Ten years ago, Amazon Web Services (AWS) launched Amazon DynamoDB, a fast, flexible NoSQL database service that offers single-digit millisecond performance at any scale.

In an online post on Jan. 18, 2012, Werner Vogels, chief technical officer at Amazon.com, wrote: “Today is a very exciting day as we release Amazon DynamoDB, a fast, highly reliable and cost-effective NoSQL database service designed for internet scale applications. DynamoDB is the result of 15 years of learning in the areas of large scale non-relational databases and cloud services.

“Several years ago we published a paper on the details of Amazon’s Dynamo technology, which was one of the first non-relational databases developed at Amazon,” Vogels continued. “The original Dynamo design was based on a core set of strong distributed systems principles resulting in an ultra-scalable and highly reliable database system. Amazon DynamoDB, which is a new service, continues to build on these principles, and also builds on our years of experience with running non-relational databases and cloud services, such as Amazon SimpleDB and Amazon S3, at scale. It is very gratifying to see all of our learning and experience become available to our customers in the form of an easy-to-use managed service.”

One of Vogels’s coauthors on the 2007 Dynamo paper, and a key contributor to the development of DynamoDB was Swaminathan (Swami) Sivasubramanian, then an Amazon research engineer working on the design, implementation, and analysis of distributed systems technology, and now vice president of Database, Analytics, and Machine Learning at AWS.

More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.
Swami Sivasubramanian

A decade after the launch of DynamoDB, Sivasubramanian says we’re “experiencing an amazing era of renaissance when it comes to data and machine learning.”

“We now live in an era where you can actually store your data in these databases and quickly start building your data lakes within Amazon S3 and then analyze them using Amazon SageMaker in a matter of a couple of weeks, if not days. That is simply remarkable.

“We now have the opportunity to help customers gain insights from their data faster,” Sivasubramanian added. “This is a mission that truly excites me because customers really want to put their data to work to enable data-driven decision making. More and more, CIOs and organizations are realizing that it is going to be survival of the most informed, and those that put their data to work are the ones that won't just survive, they will thrive.”

To mark the 10-year anniversary of the launch of Amazon DynamoDB, Amazon Science asked Sivasubramanian three questions about the origins of DynamoDB, its progenitor Dynamo, and the future of DynamoDB.

  1. Q. 

    You were a co-author on the 2007 Dynamo paper. At that time, the industry was transitioning to a scale out vs scale up architectural approach. Can you tell us about the origin story for Dynamo?

    A. 

    To get to 2007, I have to start with 2004, 2005. Even as I was working on my PhD [Sivasubramanian earned his PhD in computer science in 2006 from Vrije Universiteit Amsterdam] I was contemplating where I would work. Ultimately what convinced me to join Amazon as a research engineer intern [2005] was seeing how Amazon was pushing the boundaries of scale.

    I admit I was a little bit of a skeptic as an outsider. At that time, AWS didn’t even exist. But when I joined, I soon had an ‘a ha moment’ that, yes, Amazon was an e-commerce company, but actually it was a technology company that also did e-commerce. It was an interesting revelation for me seeing how Amazon had to invent so many new technologies to even support its e-commerce workload.

    As an intern, I was working as an engineer on amazon.com and during our peak holiday traffic time we experienced a serious scaling failure due to a database transaction deadlocking issue. The problem was caused by the relational database from a commercial vendor that we were using at the time. A bunch of engineers got together and wrote what we call a COE, a correction of errors document in which we say what happened, what we learned, how we fixed the issue, and how we would avoid a recurrence.

    I don't know if it was me being naive or just being confident in the way only a 20 something intern can be, but I asked the question ‘Why are we using a relational database for this? These workloads don't need the SQL level of complexity and transactional guarantees.’

    Peter Vosshall presents Dynamo at 2007 ACM Symposium on Operating System Principles (SOSP).

    This led us to start rethinking how we architected our underlying data stores altogether. At the time there wasn’t a scalable non-relational database. This is what led us to build the original Dynamo, and which led us to write the paper. Dynamo was not the only thing we were rethinking about our architecture at this time. We realized we also needed a scalable storage system, which led us to build S3, and we also realized that we needed a more managed relational database with the ability to do automated replication, failover, and backups/restore, which led us to build Amazon RDS.

    One rule we had related to writing the original Dynamo paper was not to publish when we developed the original design, but first let Dynamo run in production supporting several Amazon.com services, so that the Dynamo paper would be an end-to-end experience paper. Werner and I felt very strongly about this because we didn't want it to be just another academic paper. That’s why I was very proud when 10 years later that paper was awarded a test of time award.

  2. Q. 

    What’s the origin story for DynamoDB, and how has the technology evolved in the past decade?

    A. 

    The idea behind DynamoDB developed from discussions with customers like Don MacAskill, the CEO of SmugMug and Flickr. More and more companies like Don’s were web-based companies, and the number of users online was exploding. The traditional relational database model of storing all the data in a single box was not scaling well. It forced the complexity back on the users to shard their relational databases and then manage all the partitioning and re-partitioning and so forth.

    This wasn’t new to us; these challenges are why we built the original Dynamo, but it wasn’t yet a service. It was a software system that Amazon engineers had to operate. At some point in one of our customer advisory board meetings, Don said, ‘You all started Dynamo and showed what is possible with a scalable non-relational database system. Why can't we have that as an external service?’

    All senior AWS executives were there, and honestly it was a question we were asking ourselves at the time. Don wasn’t the only customer asking for it, more and more customers wanted that kind of scalable database where they didn't have to deal with partitioning and re-partitioning, and they also wanted extreme availability. This led to the genesis of our thinking about what it would take to build a scalable cloud database that wasn’t constrained by the SQL API.

    DynamoDB was different from the original Dynamo because it actually exposed several of the original Dynamo components via very easy-to-use cloud controls. Our customers didn’t have to provision clusters anymore. They could just create a table and seamlessly scale it up and down; they didn’t have to deal with any of the operations, or even install a single library to operate a database. This evolution of Dynamo to DynamoDB was important because we truly embraced the cloud, and its elasticity and scalability in an unprecedented manner.

    Werner Vogels, vice president and chief technology officer of Amazon.com, introduced DynamoDB on Jan. 18, 2012 with this post in which he said DynamoDB "brings the power of the cloud to the NoSQL database world."

    We launched it on January 18th, 2012 and it was a hit right out of the gate. Don’s company and several others started using it. Right from the launch, not just elasticity, but single-digit latency performance was something that resonated really well with customers. We had innovated quite a bit, all the way from the protocol layer, to the underlying storage layer for SSD storage, and other capabilities that we enabled.

    One of the first production projects was a customer with an interesting use case; they were doing a Super Bowl advertisement. Because DynamoDB was extremely elastic it could seamlessly scale up to 100,000 writes a second, and then scale down after the Super Bowl was over so they wouldn’t incur costs anymore. This was a big deal; it wasn’t considered possible at that time. It seems super obvious now, but at that time databases were not that elastic and scalable.

    It was a bold vision. But DynamoDB’s built-for-the-cloud architecture made all of these scale-out use cases possible, and that is one of the reasons why DynamoDB now powers multiple high-traffic Amazon sites and systems including Alexa, Amazon.com, and all Amazon fulfillment centers. Last year, over the course of our 66-hour Prime Day, these sources made trillions of API calls and DynamoDB maintained high availability with single-digit millisecond performance, peaking at 89.2 million requests per second.

    And since 2012, we have added so many innovations, not just for its underlying availability, durability, security and scale, but ease-of-use features as well.

    Swami Sivasubramanian, AWS | CUBE Conversation, January 2022

    We’ve gone beyond key value store and now support not just a hash-based partition but also range-based partitioning, and we’ve added support for secondary indexes to enable more complex query capabilities —without compromising on scale or availability.

    We also now support scalable change data capture through Amazon Kinesis Data Steams for DynamoDB. One of the things I strongly believe with any database is that it should not be an island; it can’t be a dead end. It should generate streams of what data changed and then use that to bridge it to your analytics applications, or other data stores.

    We have continued innovating across the board on features like backup and restore. For a large-scale database system like DynamoDB with millions of partitions, doing backup and restore isn’t easy, and a lot of great innovations went into making this experience easy for customers.

    We have also added the ability to do global tables so customers can operate across multiple regions. And then we added the ability to do transactions with DynamoDB, all with an eye on how do you continue to keep DynamoDB’s mission around availability and scalability?

    Recently we also launched the ability to reduce the cost of storage with the Amazon DynamoDB Standard Infrequent Access table class. Customers often need to store data long term, and while this older data may be accessed infrequently, it must remain highly available. For example, end users of social media apps rarely access older posts and uploaded images, but the app must ensure that these artifacts are immediately accessible when requested. This infrequently accessed data can represent significant storage expense for customers due to their growing volume and the relatively high cost of storing this data, so customers optimize costs in these cases by writing code to move older, less frequently accessed data from DynamoDB to lower cost storage alternatives like Amazon S3. So at the most recent re:Invent we launched Amazon DynamoDB Standard-Infrequent Access table class, a new cost-efficient table class to store infrequently accessed data, yet maintain the high availability and performance of DynamoDB.

    We are on this journey of maintaining the original vision of DynamoDB as the guiding light, but continue to innovate to help customers with use cases around ease of querying, the ability to do complex, global transaction replication, while also continuing to manage costs.

  3. Q. 

    What might the next 10 years bring?

    A. 

    When we started with DynamoDB ten years ago, the cloud itself was something customers were just starting to understand better — its benefits and what they could do.

    Now we live in a world where cloud is the new normal in terms of how customers are building IT applications, and scale is also the new normal because every app is being built to handle viral moments. DynamoDB itself will be on this continuous journey where we will continue to innovate on behalf of customers. One of the things we will continue moving toward is an end-to-end data strategy mission because, as I mentioned earlier, no database is an island.

    Customers no longer want to just store and query the data in their databases. They then want to analyze that data to create value, whether that’s a better personalization or recommendation engine, or a forecasting system that you can run predictive analytics against using machine learning. Connecting the dots end to end, and continuing to make DynamoDB more secure, more available, more performant, and easier to use will be our never-ending journey.

Research areas

Related content

US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. AGI Autonomy is focused on developing new foundational capabilities for useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. In this role, you will work closely with research teams to design, build, and maintain systems for training and evaluating state-of-the-art agent models. Our team works inside the Amazon AGI SF Lab, an environment designed to empower AI researchers and engineers to work with speed and focus. Our philosophy combines the agility of a startup with the resources of Amazon. Key job responsibilities * Evaluate performance of the training infrastructure, diagnose problems and address any gaps that exist. * Develop reliable infrastructure to schedule training and model evaluation jobs across clusters. * Work closely with researchers to create new techniques, infrastructure, and tooling around emerging research capabilities and evaluating models to meet customer needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software. About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bengaluru
Are you passionate about building data-driven applied science solutions to drive the profitability of the business? Are you excited about solving complex real world problems? Do you have proven analytical capabilities, exceptional communication, project management skills, and the ability to multi-task and thrive in a fast-paced environment? Join us a Senior Applied Scientist to deliver applied science solutions for Amazon Payment Products. Amazon Payment Products team creates and manages a global portfolio of payment products, including co-branded credit cards, instalment financing, etc. Within this team, we are looking for a Senior Applied Scientist who will be responsible for the following: Key job responsibilities As a Senior Applied Scientist, you will be responsible for designing and deploying scalable ML, GenAI, Agentic AI solutions that will impact the payments of millions of customers and solve key customer experience issues. You will develop novel deep learning, LLM for task automation, text processing, pattern recognition, and anomaly detection problems. You will define the research and experiments strategy with an iterative execution approach to develop AI/ML models and progressively improve the results over time. You will partner with business and engineering teams to identify and solve large and significantly complex problems that require scientific innovation. You will help the team leverage your expertise, by coaching and mentoring. You will contribute to the professional development of colleagues, improving their technical knowledge and the engineering practices. You will independently as well as guide team to file for patents and/or publish research work where opportunities arise. As the Payment Products organization deals with problems that are directly related to payments of customers, the Senior Applied Scientist role will impact the large product strategy, identify new business opportunities and provides strategic direction, which will be very exciting.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design and implement a modern, fast, and ergonomic development environment for AI researchers, eliminating current pain points in build times, testing workflows, and iteration speed * Build and manage CI/CD pipelines (CodePipeline, Jenkins, etc.) that support large-scale AI research workflows, including pipelines capable of orchestrating thousands of simultaneous agentic experiments * Develop tooling that bridges local development environments with remote supercomputing resources, enabling researchers to seamlessly leverage massive compute from their IDEs * Manage and optimize code repository infrastructure (GitLab, Phabricator, or similar) to support collaborative research at scale * Implement release management processes and automation to ensure reliable, repeatable deployments of research code and models * Optimize container build systems for GPU workloads, ensuring fast iteration cycles and efficient resource utilization * Work directly with researchers to understand workflow pain points and translate them into infrastructure improvements * Build monitoring and observability into development tooling to identify bottlenecks and continuously improve developer experience * Design and maintain build systems optimized for ML frameworks, CUDA code, and distributed training workloads About the team The team is shaping developer experience from the ground up. Building tools that enable researchers to move at the speed of thought: IDEs that seamlessly shell out to supercomputers, CI/CD pipelines that orchestrate thousands of agentic commands simultaneously, and build systems optimized for GPU-accelerated workflows. Your infrastructure will be the foundation that enables the next generation of AI research, directly contributing to our mission of building the most capable agents in the world.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design, build, and maintain the compute platform that powers all AI research at the SF AI Lab, managing large-scale GPU pools and ensuring optimal resource utilization * Partner directly with research scientists to understand experimental requirements and develop infrastructure solutions that accelerate research velocity * Implement and maintain robust security controls and hardening measures while enabling researcher productivity and flexibility * Modernize and scale existing infrastructure by converting manual deployments into reproducible Infrastructure as Code using AWS CDK * Optimize system performance across multiple GPU architectures, becoming an expert in extracting maximum computational efficiency * Design and implement monitoring, orchestration, and automation solutions for GPU workloads at scale * Ensure infrastructure is compliant with Amazon security standards while creatively solving for research-specific requirements * Collaborate with AWS teams to leverage and influence cloud services that support AI workloads * Build distributed systems infrastructure, including Kubernetes-based orchestration, to support multi-tenant research environments * Serve as the bridge between traditional systems engineering and ML infrastructure, bringing enterprise-grade reliability to research computing About the team This role is part of the foundational infrastructure team at the SF AI Lab, responsible for the platform that enables all research across the organization. Our team serves as the critical link between Amazon's enterprise infrastructure and the Lab's research needs. We are experts in performance optimization, systems architecture, and creative problem-solving—finding ways to push the boundaries of what's possible while maintaining security and reliability standards. We work closely with research scientists, understanding their experimental needs and translating them into robust, scalable infrastructure solutions. Our team has deep expertise in ML framework internals and GPU optimization, but we're also pragmatic systems engineers who build traditional infrastructure with enterprise-grade quality. We value engineers who can balance research velocity with operational excellence, who bring curiosity about ML while maintaining strong fundamentals in systems engineering. This is a small, high-impact team where your work directly enables breakthrough AI research. You'll have the opportunity to work with some of the most advanced AI infrastructure in the world while building the skills that define the future of ML systems engineering.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches. - Recruit Scientists to the team and provide mentorship.