Diagram that describes the features of Amazon HealthLake

AWS director of machine learning explains the significance of new Amazon HealthLake service

Taha Kass-Hout says the service’s secret sauce is its ability to create a comprehensive data set within a secure data lake that can be organized by different attributes, and then queried and analyzed with advanced analytics and machine learning.

During yesterday's re:Invent 2020 Machine Learning keynote, Matt Wood, AWS vice president of AI, announced Amazon HealthLake, a HIPAA-eligible service that enables healthcare providers, health insurance companies, and pharmaceutical companies to store, transform, query, and analyze health data in the cloud at petabyte scale.

Taha Kass-Hout, AWS director of machine learning
Taha Kass-Hout, AWS director of machine learning.

The new service provides these customers with the ability to use machine learning to spot trends and anomalies in health data so they can provide more precise care for individual patients and across entire populations.

One of the scientists behind the new service is Taha Kass-Hout, MD, MS, AWS director of machine learning. A physician and bioinformatician, Kass-Hout has developed a successful track record in the past two decades innovating on behalf of customers, and pioneering in healthcare and life sciences, precision medicine, and artificial intelligence. Prior to joining Amazon in 2017, he was the first chief health informatics officer for the US Food and Drug Administration (FDA), where he created openFDA and precisionFDA, part of President Obama’s 2015 Precision Medicine Initiative.  Previously, he served as director of health informatics solutions and operations for the US Centers for Disease Control and Prevention (CDC).

Prior to the announcement, Kass-Hout took some time to answer questions about the new service for Amazon Science.

Q. There’s a desire for our health care system to shift from reactive to proactive, to provide more preventative care. What role can Amazon HealthLake play in accelerating that trend?

First, Amazon HealthLake is a HIPAA-eligible service that allows our healthcare and life sciences customers to bring together their disparate health information previously stored in many different formats, and within various data silos, into a secure data lake they own and control. Emerging open standards, such as the Fast Healthcare Interoperability Resources (FHIR), aim to address this challenge by providing a consistent format to describe and exchange structured data across these systems.

However, much of this data is unstructured information, like clinical notes, PDF laboratory reports, insurance claims, X-ray and MRI images, recorded conversations, heart ECG or brain EEG traces, and more, which means the data needs to be extracted and transformed before it can be searched and analyzed. Amazon HealthLake ingests data in FHIR V4 format and then normalizes this information and tags the dates and any key descriptions of events, such as medications, procedures, diagnoses, across every encounter a patient might have throughout their health history. It then indexes all the information so it can be searched later. Now, you have a complete view of an individual patient’s history that is to a level of granularity where now you can apply advanced analytics or predict a bunch of interesting things with new machine learning models to all that data, not just a subset of it.

For example, today the most widely used clinical models to predict someone’s risk of disease oftentimes might have as few as 20 or 30 data points, like someone’s risk of a heart attack or failure. However, if you look at an individual's medical record, there may be at least 250,000 to 300,000 data points, including their medical notes. None of this is used today to manage patients or predict their outcomes. So, we believe the ability to read someone’s entire medical history will lead to better clinical decisions where health care providers can now discover trends and insights on their entire populations from this previously untapped information.

Q. What is the secret sauce of Amazon HealthLake?

At a high level, it’s the ability to create a comprehensive data set in a secure data lake that can be organized by different attributes, and then queried and analyzed with advanced analytics and machine learning. This ability to search and apply advanced analytics, or predict potential disease outcomes with machine learning models, including healthcare utilization metrics, or cost, is very powerful.

The benefit is that now you can make predictions much earlier than you could previously, or intervene quickly to improve care and reduce cost.  The other benefit is now you have access to all this information through a standards-based API, allowing you — with the patient’s consent — to share that data between health systems and with popular third-party applications, analytic platforms, etc. Providers can collaborate more effectively and patients can have unfettered access to their medical information. Using Amazon HealthLake, you now have a patient’s entire medical information structured and organized with a timeline, allowing you to run numerous models to assess risk of chronic disease, manage total medical expense, or predict a patient being readmitted to a hospital after being discharged—at an individual level as well as the population level.

Q. If you were still a practicing physician today, what would most excite you about this solution?

What excites me most is that at the point of care physicians can now look at the individual in front of them and determine what's relevant at that time for each individual patient. They can also zoom out to look at the entire population, compare and manage the broader population with data-driven decisions. This will enable a higher quality of patient care, as physicians can use data to figure out what is working and what is not.

Imagine you have a diabetic patient whose condition you’re managing, and two months later their A1C or glucose level is still not responding to the treatment that you have prescribed. Imagine that you can have comparative analysis on that patient and figure out what other individuals might be similarly unique, and see what worked, or didn’t work for them. Now that you have this comprehensive information available to you about the patient, as well as the entire population, you can make point-of-care decisions that are driven by evidence from the overall data. That’s something really profound. It’s something that’s desperately needed to close gaps in care and ensure you’re providing the highest-quality care every patient deserves, and find out what is working and what isn’t for the larger population.

Q. If Amazon HealthLake had been available a decade ago when you were at the CDC and FDA, how might that have changed your approach to those roles?

No doubt we would have been able to find aberrations from the norm in the larger population much earlier. We could have done far more predictive analytics and figured out sooner whether interventions were working or not, for example, during the H1N1 pandemic I worked on. Having that ability to look across all information and then glean insights from the data, whether it was about an emerging outbreak, or evaluating certain conditions propagating within a community, and then identifying gaps in care, or what might have contributed to disparities in disease susceptibility, would have been immensely helpful.

At the FDA, the amount of information you're trying to manage is enormous. For example, take post-marketing surveillance. This is when a new drug is being approved and you're trying to track across the population to determine if there are any adverse reactions, or trying to understand why a certain part of the population is responding positively, while another isn’t. Oftentimes in these situations we struggled dealing with a lot of unstructured data that comes through in all forms, whether it’s a patient reporting information, or a physician, a pharmacist, or data that a pharma company is mandated to submit.

One of the greatest things about Amazon Web Services is not only are we removing the heavy lifting for all these components, but demystifying machine learning and artificial intelligence.
Taha Kass-Hout

Data is often unstructured like a handwritten note, containing typos, abbreviations, and spelling errors. There are a lot of lost signals in that large volume of text that a solution like Amazon HealthLake absolutely would help identify. That’s because Amazon HealthLake takes the meaning and context into account to extract and establish relationships between entities, such as a medication and its dosage for a medical condition and the associated adverse reaction. It would provide that opportunity to find a needle in a haystack, and provide earlier detection of any adverse events from the wide variety of unstructured medical data that's been collected.

If all of those tools were available 10 years ago, I could have imagined getting ahead of outbreaks or disease propagation in any community, and understanding the complexities associated with each occurrence. We then could have applied a combination of modeling and pattern recognition so we could deliver better outcomes for the public.

Q. Is the development of a service like Amazon HealthLake one of the reasons you decided to join Amazon four years ago?

Absolutely. I have been on a mission focused on making more informed health decisions, whether that’s at the point of care, or as a public health official trying to determine the right public health intervention at the population level. It is humbling to be part of the team building tools and machinery to help healthcare providers, public health officials and others carry out their missions securely, and at scale with the most advanced and accurate scientific tools. The democratization of these technologies so a clinician like myself can use these tools regardless of technical depth is of immense value.

One of the greatest things about Amazon Web Services is not only are we removing the heavy lifting for all these components, but demystifying machine learning and artificial intelligence. We are simplifying access to these tools so they can be plugged in and tailored to individual needs, whether you are at the bottom of the stack — someone with deep expertise —or a novice practitioner. The power of Amazon HealthLake is that you can bring all your data together in a secure environment that only you can access, and then derive trends, insights, and findings from all your data to make clinical decisions, recommendations, and perhaps new policies. That is the promise of a learning health system.

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!